These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23159127)

  • 1. A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen.
    Lassaux P; Peri C; Ferrer-Navarro M; Gourlay LJ; Gori A; Conchillo-Solé O; Rinchai D; Lertmemongkolchai G; Longhi R; Daura X; Colombo G; Bolognesi M
    Structure; 2013 Jan; 21(1):167-175. PubMed ID: 23159127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.
    Gourlay LJ; Thomas RJ; Peri C; Conchillo-Solé O; Ferrer-Navarro M; Nithichanon A; Vila J; Daura X; Lertmemongkolchai G; Titball R; Colombo G; Bolognesi M
    FEBS J; 2015 Apr; 282(7):1319-33. PubMed ID: 25645451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based design of a B cell antigen from B. pseudomallei.
    Gaudesi D; Peri C; Quilici G; Gori A; Ferrer-Navarro M; Conchillo-Solé O; Thomas R; Nithichanon A; Lertmemongkolchai G; Titball R; Daura X; Colombo G; Musco G
    ACS Chem Biol; 2015 Mar; 10(3):803-12. PubMed ID: 25495888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology.
    Gourlay LJ; Peri C; Ferrer-Navarro M; Conchillo-Solé O; Gori A; Rinchai D; Thomas RJ; Champion OL; Michell SL; Kewcharoenwong C; Nithichanon A; Lassaux P; Perletti L; Longhi R; Lertmemongkolchai G; Titball RW; Daura X; Colombo G; Bolognesi M
    Chem Biol; 2013 Sep; 20(9):1147-56. PubMed ID: 23993463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis.
    Swetha RG; Sandhya M; Ramaiah S; Anbarasu A
    J Theor Biol; 2016 Jul; 400():11-8. PubMed ID: 27086038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the Burkholderia pseudomallei BPSL2765 Pal3 Epitope.
    Gori A; Peri C; Quilici G; Nithichanon A; Gaudesi D; Longhi R; Gourlay L; Bolognesi M; Lertmemongkolchai G; Musco G; Colombo G
    ACS Infect Dis; 2016 Mar; 2(3):221-30. PubMed ID: 27623032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin.
    Nithichanon A; Rinchai D; Gori A; Lassaux P; Peri C; Conchillio-Solé O; Ferrer-Navarro M; Gourlay LJ; Nardini M; Vila J; Daura X; Colombo G; Bolognesi M; Lertmemonkolchai G
    PLoS Negl Trop Dis; 2015; 9(7):e0003917. PubMed ID: 26222657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Burkholderia pseudomallei Bip proteins as vaccines and Bip antibodies as detection agents.
    Druar C; Yu F; Barnes JL; Okinaka RT; Chantratita N; Beg S; Stratilo CW; Olive AJ; Soltes G; Russell ML; Limmathurotsakul D; Norton RE; Ni SX; Picking WD; Jackson PJ; Stewart DI; Tsvetnitsky V; Picking WL; Cherwonogrodzky JW; Ketheesan N; Peacock SJ; Wiersma EJ
    FEMS Immunol Med Microbiol; 2008 Jan; 52(1):78-87. PubMed ID: 17995960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune Control of
    Nithichanon A; Rinchai D; Buddhisa S; Saenmuang P; Kewcharoenwong C; Kessler B; Khaenam P; Chetchotisakd P; Maillere B; Robinson J; Reynolds CJ; Boyton RJ; Altmann DM; Lertmemongkolchai G
    Front Immunol; 2018; 9():484. PubMed ID: 29616023
    [No Abstract]   [Full Text] [Related]  

  • 10. Burkholderia pseudomallei-specific recombinant protein and its potential in the diagnosis of melioidosis.
    Wongprompitak P; Thepthai C; Songsivilai S; Dharakul T
    Asian Pac J Allergy Immunol; 2001 Mar; 19(1):37-41. PubMed ID: 11495298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.
    Musson JA; Reynolds CJ; Rinchai D; Nithichanon A; Khaenam P; Favry E; Spink N; Chu KK; De Soyza A; Bancroft GJ; Lertmemongkolchai G; Maillere B; Boyton RJ; Altmann DM; Robinson JH
    J Immunol; 2014 Dec; 193(12):6041-9. PubMed ID: 25392525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of peptide mimotopes of Burkholderia pseudomallei exopolysaccharide.
    Legutki JB; Nelson M; Titball R; Galloway DR; Mateczun A; Baillie LW
    Vaccine; 2007 Nov; 25(45):7796-805. PubMed ID: 17935838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens.
    Felgner PL; Kayala MA; Vigil A; Burk C; Nakajima-Sasaki R; Pablo J; Molina DM; Hirst S; Chew JS; Wang D; Tan G; Duffield M; Yang R; Neel J; Chantratita N; Bancroft G; Lertmemongkolchai G; Davies DH; Baldi P; Peacock S; Titball RW
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13499-504. PubMed ID: 19666533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063.
    Gourlay LJ; Peano C; Deantonio C; Perletti L; Pietrelli A; Villa R; Matterazzo E; Lassaux P; Santoro C; Puccio S; Sblattero D; Bolognesi M
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2227-35. PubMed ID: 26527140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of antigens derived from Burkholderia pseudomallei, B. thailandensis, and B. cepacia in the indirect hemagglutination assay for melioidosis.
    Gilmore G; Barnes J; Ketheesan N; Norton R
    Clin Vaccine Immunol; 2007 Nov; 14(11):1529-31. PubMed ID: 17804613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burkholderia thailandensis whole cell antigen cross-reacts with B. pseudomallei antibodies from patients with melioidosis in an immunofluorescent assay.
    Puthucheary SD; Anuar AS; Tee TS
    Southeast Asian J Trop Med Public Health; 2010 Mar; 41(2):395-400. PubMed ID: 20578523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of a second-generation Lyme disease vaccine based on a C-terminal fragment of Borrelia burgdorferi OspA.
    Koide S; Yang X; Huang X; Dunn JJ; Luft BJ
    J Mol Biol; 2005 Jul; 350(2):290-9. PubMed ID: 15935380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders.
    Sarkar-Tyson M; Smither SJ; Harding SV; Atkins TP; Titball RW
    Vaccine; 2009 Jul; 27(33):4447-51. PubMed ID: 19490962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection.
    Healey GD; Elvin SJ; Morton M; Williamson ED
    Infect Immun; 2005 Sep; 73(9):5945-51. PubMed ID: 16113315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.