BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23159602)

  • 1. Selectivity of LC-MS/MS analysis: implication for proteomics experiments.
    Gallien S; Duriez E; Demeure K; Domon B
    J Proteomics; 2013 Apr; 81():148-58. PubMed ID: 23159602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in high-resolution accurate mass spectrometry application to targeted proteomics.
    Lesur A; Domon B
    Proteomics; 2015 Mar; 15(5-6):880-90. PubMed ID: 25546610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of proteins in urine samples using targeted mass spectrometry methods.
    Khristenko N; Domon B
    Methods Mol Biol; 2015; 1243():207-20. PubMed ID: 25384748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in high-resolution quantitative proteomics: implications for clinical applications.
    Gallien S; Domon B
    Expert Rev Proteomics; 2015; 12(5):489-98. PubMed ID: 26189960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
    Gallien S; Kim SY; Domon B
    Mol Cell Proteomics; 2015 Jun; 14(6):1630-44. PubMed ID: 25755295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in targeted proteomics for clinical applications.
    Domon B; Gallien S
    Proteomics Clin Appl; 2015 Apr; 9(3-4):423-31. PubMed ID: 25504492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the quantification of a therapeutic protein using nominal and accurate mass MS/MS.
    Plumb RS; Fujimoto G; Mather J; Potts WB; Rainville PD; Ellor NJ; Evans C; Kehler JR; Szapacs ME
    Bioanalysis; 2012 Mar; 4(5):605-15. PubMed ID: 22409557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations on selected reaction monitoring experiments: implications for the selectivity and accuracy of measurements.
    Domon B
    Proteomics Clin Appl; 2012 Dec; 6(11-12):609-14. PubMed ID: 23112131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.
    de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ
    J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples.
    Geromanos SJ; Hughes C; Ciavarini S; Vissers JP; Langridge JI
    Anal Bioanal Chem; 2012 Sep; 404(4):1127-39. PubMed ID: 22811061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.
    Gallien S; Domon B
    Bioanalysis; 2014 Aug; 6(16):2159-70. PubMed ID: 25331860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides.
    Dillen L; Cools W; Vereyken L; Lorreyne W; Huybrechts T; de Vries R; Ghobarah H; Cuyckens F
    Bioanalysis; 2012 Mar; 4(5):565-79. PubMed ID: 22409554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of low- versus high-resolution liquid chromatography-mass spectrometric strategies for measuring perfluorinated contaminants in fish.
    Kadar H; Veyrand B; Antignac JP; Durand S; Monteau F; Le Bizec B
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Sep; 28(9):1261-73. PubMed ID: 21707268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer.
    Pailleux F; Beaudry F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Feb; 947-948():164-7. PubMed ID: 24434561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.