BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23159617)

  • 1. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells.
    Nishimura A; Kawahara N; Takagi H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):137-43. PubMed ID: 23159617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.
    Yoshikawa Y; Nasuno R; Kawahara N; Nishimura A; Watanabe D; Takagi H
    Nitric Oxide; 2016 Jul; 57():85-91. PubMed ID: 27178802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between the reductase Tah18 and highly conserved Fe-S containing Dre2 C-terminus is essential for yeast viability.
    Soler N; Delagoutte E; Miron S; Facca C; Baïlle D; d'Autreaux B; Craescu G; Frapart YM; Mansuy D; Baldacci G; Huang ME; Vernis L
    Mol Microbiol; 2011 Oct; 82(1):54-67. PubMed ID: 21902732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis.
    Netz DJ; Stümpfig M; Doré C; Mühlenhoff U; Pierik AJ; Lill R
    Nat Chem Biol; 2010 Oct; 6(10):758-65. PubMed ID: 20802492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.
    Nishimura A; Kotani T; Sasano Y; Takagi H
    FEMS Yeast Res; 2010 Sep; 10(6):687-98. PubMed ID: 20550582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast.
    Vernis L; Facca C; Delagoutte E; Soler N; Chanet R; Guiard B; Faye G; Baldacci G
    PLoS One; 2009; 4(2):e4376. PubMed ID: 19194512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CKA2 functions in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NO accumulation in yeast.
    Liu WC; Yuan HM; Li YH; Lu YT
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26100262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae.
    Matsuura K; Takagi H
    J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress.
    Seguin A; Bayot A; Dancis A; Rogowska-Wrzesinska A; Auchère F; Camadro JM; Bulteau AL; Lesuisse E
    Mitochondrion; 2009 Apr; 9(2):130-8. PubMed ID: 19460301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity.
    Peiter E; Fischer M; Sidaway K; Roberts SK; Sanders D
    FEBS Lett; 2005 Oct; 579(25):5697-703. PubMed ID: 16223494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production.
    Carmona L; Gandía M; López-García B; Marcos JF
    Biochem Biophys Res Commun; 2012 Jan; 417(1):56-61. PubMed ID: 22120633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection from nitrosative stress by yeast flavohemoglobin.
    Liu L; Zeng M; Hausladen A; Heitman J; Stamler JS
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4672-6. PubMed ID: 10758168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis.
    Zhang Y; Li H; Zhang C; An X; Liu L; Stubbe J; Huang M
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):E1695-704. PubMed ID: 24733891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic analysis of nitrosative stress.
    Foster MW; Liu L; Zeng M; Hess DT; Stamler JS
    Biochemistry; 2009 Feb; 48(4):792-9. PubMed ID: 19138101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.
    Takagi H
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):211-23. PubMed ID: 18802692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.
    Nasuno R; Hirano Y; Itoh T; Hakoshima T; Hibi T; Takagi H
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11821-6. PubMed ID: 23818613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.