These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23159631)

  • 1. Blinking effect and the use of quantum dots in single molecule spectroscopy.
    Rombach-Riegraf V; Oswald P; Bienert R; Petersen J; Domingo MP; Pardo J; Gräber P; Galvez EM
    Biochem Biophys Res Commun; 2013 Jan; 430(1):260-4. PubMed ID: 23159631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots.
    Durisic N; Wiseman PW; Grütter P; Heyes CD
    ACS Nano; 2009 May; 3(5):1167-75. PubMed ID: 19385605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating biological processes at the single molecule level using luminescent quantum dots.
    Pons T; Mattoussi H
    Ann Biomed Eng; 2009 Oct; 37(10):1934-59. PubMed ID: 19521775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.
    Bachir AI; Kolin DL; Heinze KG; Hebert B; Wiseman PW
    J Chem Phys; 2008 Jun; 128(22):225105. PubMed ID: 18554062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.
    Petryayeva E; Algar WR; Medintz IL
    Appl Spectrosc; 2013 Mar; 67(3):215-52. PubMed ID: 23452487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface modification on semiconductor nanocrystal fluorescence lifetime.
    Ruedas-Rama MJ; Orte A; Hall EA; Alvarez-Pez JM; Talavera EM
    Chemphyschem; 2011 Apr; 12(5):919-29. PubMed ID: 21365735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dots for single-pair fluorescence resonance energy transfer in membrane- integrated EFoF1.
    Galvez E; Düser M; Börsch M; Wrachtrup J; Gräber P
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1017-21. PubMed ID: 18793181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal quantum dots as saturable fluorophores.
    Schwartz O; Tenne R; Levitt JM; Deutsch Z; Itzhakov S; Oron D
    ACS Nano; 2012 Oct; 6(10):8778-82. PubMed ID: 22992215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules.
    Pattani VP; Li C; Desai TA; Vu TQ
    Biomed Microdevices; 2008 Jun; 10(3):367-74. PubMed ID: 18183489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.
    Heuff RF; Swift JL; Cramb DT
    Phys Chem Chem Phys; 2007 Apr; 9(16):1870-80. PubMed ID: 17431516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis.
    Sang F; Huang X; Ren J
    Electrophoresis; 2014 Mar; 35(6):793-803. PubMed ID: 24375522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots.
    Carrillo-Carrión C; Cárdenas S; Simonet BM; Valcárcel M
    Anal Chem; 2009 Jun; 81(12):4730-3. PubMed ID: 19462974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules.
    Song N; Zhu H; Jin S; Zhan W; Lian T
    ACS Nano; 2011 Jan; 5(1):613-21. PubMed ID: 21190376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots.
    Pons T; Medintz IL; Farrell D; Wang X; Grimes AF; English DS; Berti L; Mattoussi H
    Small; 2011 Jul; 7(14):2101-8. PubMed ID: 21710484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared quantum dots: synthesis, functionalization and analytical applications.
    Ma Q; Su X
    Analyst; 2010 Aug; 135(8):1867-77. PubMed ID: 20563343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the effect of physiological cations on quantum dots by using single-particle detection.
    Zhang CY; Li D
    Analyst; 2010 Sep; 135(9):2355-9. PubMed ID: 20603686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking.
    de Thomaz AA; Almeida DB; Pelegati VB; Carvalho HF; Cesar CL
    J Phys Chem B; 2015 Mar; 119(11):4294-9. PubMed ID: 25692215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.
    Zhang CY; Yang K
    Anal Bioanal Chem; 2010 May; 397(2):703-8. PubMed ID: 20213168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.