BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

700 related articles for article (PubMed ID: 23159819)

  • 1. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-axial mechanical properties of human trabecular bone.
    Rincón-Kohli L; Zysset PK
    Biomech Model Mechanobiol; 2009 Jun; 8(3):195-208. PubMed ID: 18695984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.
    Hosseini HS; Clouthier AL; Zysset PK
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24384581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone.
    Fenech CM; Keaveny TM
    J Biomech Eng; 1999 Aug; 121(4):414-22. PubMed ID: 10464696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
    Sanyal A; Scheffelin J; Keaveny TM
    J Biomech Eng; 2015 Jan; 137(1):0110091-01100910. PubMed ID: 25401413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage accumulation in vertebral trabecular bone depends on loading mode and direction.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2011 Apr; 44(6):1164-9. PubMed ID: 21295781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.