These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23160128)

  • 1. Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system.
    Lee JH; Jung SC; Bui le M; Kang KH; Song JJ; Kim SC
    Appl Environ Microbiol; 2013 Feb; 79(3):774-82. PubMed ID: 23160128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial organization of heterologous metabolic system in vivo based on TALE.
    Zhu LY; Qiu XY; Zhu LY; Wu XM; Zhang Y; Zhu QH; Fan DY; Zhu CS; Zhang DY
    Sci Rep; 2016 May; 6():26065. PubMed ID: 27184291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine.
    Dong X; Quinn PJ; Wang X
    Biotechnol Adv; 2011; 29(1):11-23. PubMed ID: 20688145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis.
    Zhang Y; Meng Q; Ma H; Liu Y; Cao G; Zhang X; Zheng P; Sun J; Zhang D; Jiang W; Ma Y
    Microb Cell Fact; 2015 Jun; 14():86. PubMed ID: 26070803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system.
    Fang Y; Wang J; Ma W; Yang J; Zhang H; Zhao L; Chen S; Zhang S; Hu X; Li Y; Wang X
    Metab Eng; 2020 Sep; 61():33-46. PubMed ID: 32371091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly.
    Xu X; Tian L; Tang S; Xie C; Xu J; Jiang L
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):209-222. PubMed ID: 31853777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux.
    Kang W; Ma T; Liu M; Qu J; Liu Z; Zhang H; Shi B; Fu S; Ma J; Lai LTF; He S; Qu J; Wing-Ngor Au S; Ho Kang B; Yu Lau WC; Deng Z; Xia J; Liu T
    Nat Commun; 2019 Sep; 10(1):4248. PubMed ID: 31534134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency.
    Conrado RJ; Wu GC; Boock JT; Xu H; Chen SY; Lebar T; Turnšek J; Tomšič N; Avbelj M; Gaber R; Koprivnjak T; Mori J; Glavnik V; Vovk I; Benčina M; Hodnik V; Anderluh G; Dueber JE; Jerala R; DeLisa MP
    Nucleic Acids Res; 2012 Feb; 40(4):1879-89. PubMed ID: 22021385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of Escherichia coli for L-isoleucine production.
    Park JH; Oh JE; Lee KH; Kim JY; Lee SY
    ACS Synth Biol; 2012 Nov; 1(11):532-40. PubMed ID: 23656230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering.
    Rayamajhi V; Dhakal D; Chaudhary AK; Sohng JK
    World J Microbiol Biotechnol; 2018 May; 34(6):77. PubMed ID: 29796897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An antiphage Escherichia coli mutant for higher production of L-threonine obtained by atmospheric and room temperature plasma mutagenesis.
    Cheng L; Wang J; Zhao X; Yin H; Fang H; Lin C; Zhang S; Shen Z; Zhao C
    Biotechnol Prog; 2020 Nov; 36(6):e3058. PubMed ID: 32735374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli.
    Zhao L; Lu Y; Yang J; Fang Y; Zhu L; Ding Z; Wang C; Ma W; Hu X; Wang X
    Microb Cell Fact; 2020 Feb; 19(1):46. PubMed ID: 32093713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.
    Han GH; Seong W; Fu Y; Yoon PK; Kim SK; Yeom SJ; Lee DH; Lee SG
    Metab Eng; 2017 Mar; 40():41-49. PubMed ID: 28038953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway.
    Zhu L; Fang Y; Ding Z; Zhang S; Wang X
    Biotechnol Appl Biochem; 2019 Nov; 66(6):962-976. PubMed ID: 31486127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Amination in E. coli strains effectively producing threonine].
    Astaurova OB; Livshits VA; Belareva AV; Sokolov AK
    Prikl Biokhim Mikrobiol; 1985; 21(5):611-6. PubMed ID: 3932995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli.
    Liu J; Li H; Xiong H; Xie X; Chen N; Zhao G; Caiyin Q; Zhu H; Qiao J
    Biotechnol Bioeng; 2019 Jan; 116(1):110-120. PubMed ID: 30252940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli.
    Yang J; Fang Y; Wang J; Wang C; Zhao L; Wang X
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4549-4564. PubMed ID: 31001742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-threonine uptake.
    Okamoto K; Kino K; Ikeda M
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1877-82. PubMed ID: 9404067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.