These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23160743)

  • 1. Efficient biological process characterization by definitive-screening designs: the formaldehyde treatment of a therapeutic protein as a case study.
    Erler A; de Mas N; Ramsey P; Henderson G
    Biotechnol Lett; 2013 Mar; 35(3):323-9. PubMed ID: 23160743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-use disposable technologies for biopharmaceutical manufacturing.
    Shukla AA; Gottschalk U
    Trends Biotechnol; 2013 Mar; 31(3):147-54. PubMed ID: 23178074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on current downstream bio-processing technology of vaccine products.
    Li M; Qiu YX
    Vaccine; 2013 Feb; 31(9):1264-7. PubMed ID: 23313813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using partition designs to enhance purification process understanding.
    Pieracci J; Perry L; Conley L
    Biotechnol Bioeng; 2010 Dec; 107(5):814-24. PubMed ID: 20632374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein.
    Looby M; Ibarra N; Pierce JJ; Buckley K; O'Donovan E; Heenan M; Moran E; Farid SS; Baganz F
    Biotechnol Prog; 2011; 27(6):1718-29. PubMed ID: 21948302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational and systematic protein purification process development: the next generation.
    Nfor BK; Verhaert PD; van der Wielen LA; Hubbuch J; Ottens M
    Trends Biotechnol; 2009 Dec; 27(12):673-9. PubMed ID: 19815300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregates in monoclonal antibody manufacturing processes.
    Vázquez-Rey M; Lang DA
    Biotechnol Bioeng; 2011 Jul; 108(7):1494-508. PubMed ID: 21480193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a scaled-down aerobic fermentation model for scale-up in recombinant protein vaccine manufacturing.
    Farrell P; Sun J; Gao M; Sun H; Pattara B; Zeiser A; D'Amore T
    Vaccine; 2012 Aug; 30(38):5695-8. PubMed ID: 22633869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccine process technology.
    Josefsberg JO; Buckland B
    Biotechnol Bioeng; 2012 Jun; 109(6):1443-60. PubMed ID: 22407777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery modeling of tangential flow systems.
    Rao S; Gefroh E; Kaltenbrunner O
    Biotechnol Bioeng; 2012 Dec; 109(12):3084-92. PubMed ID: 22688788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of QbD for the development of a vaccine candidate.
    Haas J; Franklin A; Houser M; Maraldo D; Mikola M; Ortiz R; Sullivan E; Otero JM
    Vaccine; 2014 May; 32(24):2927-30. PubMed ID: 24598725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design.
    Islam RS; Tisi D; Levy MS; Lye GJ
    Biotechnol Prog; 2007; 23(4):785-93. PubMed ID: 17592858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based risk analysis of coupled process steps.
    Westerberg K; Broberg-Hansen E; Sejergaard L; Nilsson B
    Biotechnol Bioeng; 2013 Sep; 110(9):2462-70. PubMed ID: 23532926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous downstream processing of biopharmaceuticals.
    Jungbauer A
    Trends Biotechnol; 2013 Aug; 31(8):479-92. PubMed ID: 23849674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of robustness and optimal work conditions for a purification process of a therapeutic recombinant protein using response surface methodology.
    Amadeo I; Mauro LV; Ortí E; Forno G
    Biotechnol Prog; 2011; 27(3):724-32. PubMed ID: 21574264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing.
    Trexler-Schmidt M; Sargis S; Chiu J; Sze-Khoo S; Mun M; Kao YH; Laird MW
    Biotechnol Bioeng; 2010 Jun; 106(3):452-61. PubMed ID: 20178122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.
    Abraham S; Bain D; Bowers J; Larivee V; Leira F; Xie J
    PDA J Pharm Sci Technol; 2015; 69(5):650-7. PubMed ID: 26429113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic approach for scale-down model development and characterization of commercial cell culture processes.
    Li F; Hashimura Y; Pendleton R; Harms J; Collins E; Lee B
    Biotechnol Prog; 2006; 22(3):696-703. PubMed ID: 16739951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomanufacturing process analytical technology (PAT) application for downstream processing: Using dissolved oxygen as an indicator of product quality for a protein refolding reaction.
    Pizarro SA; Dinges R; Adams R; Sanchez A; Winter C
    Biotechnol Bioeng; 2009 Oct; 104(2):340-51. PubMed ID: 19472303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.
    Lourenço V; Lochmann D; Reich G; Menezes JC; Herdling T; Schewitz J
    Eur J Pharm Biopharm; 2012 Jun; 81(2):438-47. PubMed ID: 22446063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.