These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Assessment of diffusion tensor MR imaging (DTI) in liver fibrosis with minimal confounding effect of hepatic steatosis. Lee Y; Kim H Magn Reson Med; 2015 Apr; 73(4):1602-8. PubMed ID: 24733754 [TBL] [Abstract][Full Text] [Related]
3. Quantification of liver fat in the presence of iron overload. Horng DE; Hernando D; Reeder SB J Magn Reson Imaging; 2017 Feb; 45(2):428-439. PubMed ID: 27405703 [TBL] [Abstract][Full Text] [Related]
4. Comparison of R2* correction methods for accurate fat quantification in fatty liver. Horng DE; Hernando D; Hines CD; Reeder SB J Magn Reson Imaging; 2013 Feb; 37(2):414-22. PubMed ID: 23165934 [TBL] [Abstract][Full Text] [Related]
5. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique. Armstrong T; Ly KV; Murthy S; Ghahremani S; Kim GHJ; Calkins KL; Wu HH Pediatr Radiol; 2018 Jul; 48(7):941-953. PubMed ID: 29728744 [TBL] [Abstract][Full Text] [Related]
6. Diffusion-weighted magnetic resonance imaging for staging liver fibrosis is less reliable in the presence of fat and iron. Bülow R; Mensel B; Meffert P; Hernando D; Evert M; Kühn JP Eur Radiol; 2013 May; 23(5):1281-7. PubMed ID: 23138385 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of ADC measurements among solid pancreatic masses by respiratory-triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique at 3.0T. Yao XZ; Yun H; Zeng MS; Wang H; Sun F; Rao SX; Ji Y Magn Reson Imaging; 2013 May; 31(4):524-8. PubMed ID: 23200681 [TBL] [Abstract][Full Text] [Related]
8. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Idilman IS; Aniktar H; Idilman R; Kabacam G; Savas B; Elhan A; Celik A; Bahar K; Karcaaltincaba M Radiology; 2013 Jun; 267(3):767-75. PubMed ID: 23382293 [TBL] [Abstract][Full Text] [Related]
9. ADC Quantification of the Vertebral Bone Marrow Water Component: Removing the Confounding Effect of Residual Fat. Dieckmeyer M; Ruschke S; Eggers H; Kooijman H; Rummeny EJ; Kirschke JS; Baum T; Karampinos DC Magn Reson Med; 2017 Oct; 78(4):1432-1441. PubMed ID: 27851874 [TBL] [Abstract][Full Text] [Related]
10. Quantification of liver fat with magnetic resonance imaging. Reeder SB; Sirlin CB Magn Reson Imaging Clin N Am; 2010 Aug; 18(3):337-57, ix. PubMed ID: 21094444 [TBL] [Abstract][Full Text] [Related]
11. Can negligible hepatic steatosis determined by magnetic resonance imaging-proton density fat fraction obviate the need for liver biopsy in potential liver donors? Satkunasingham J; Nik HH; Fischer S; Menezes R; Selzner N; Cattral M; Grant D; Jhaveri K Liver Transpl; 2018 Apr; 24(4):470-477. PubMed ID: 29080242 [TBL] [Abstract][Full Text] [Related]
12. T1 bias in chemical shift-encoded liver fat-fraction: role of the flip angle. Kühn JP; Jahn C; Hernando D; Siegmund W; Hadlich S; Mayerle J; Pfannmöller J; Langner S; Reeder S J Magn Reson Imaging; 2014 Oct; 40(4):875-83. PubMed ID: 24243439 [TBL] [Abstract][Full Text] [Related]
13. Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: Correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. Schraml C; Schmid M; Gatidis S; Schmidt H; la Fougère C; Nikolaou K; Schwenzer NF J Magn Reson Imaging; 2015 Oct; 42(4):1048-56. PubMed ID: 25683203 [TBL] [Abstract][Full Text] [Related]
14. Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Cassidy FH; Yokoo T; Aganovic L; Hanna RF; Bydder M; Middleton MS; Hamilton G; Chavez AD; Schwimmer JB; Sirlin CB Radiographics; 2009; 29(1):231-60. PubMed ID: 19168847 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of diffusion-weighted (DW) MRI with background signal suppression (MR-DWIBS) in diagnosis of mediastinal lymph node metastasis of nonsmall-cell lung cancer (NSCLC). Xu L; Tian J; Liu Y; Li C J Magn Reson Imaging; 2014 Jul; 40(1):200-5. PubMed ID: 24923480 [TBL] [Abstract][Full Text] [Related]
16. Robustness of fat quantification using chemical shift imaging. Hansen KH; Schroeder ME; Hamilton G; Sirlin CB; Bydder M Magn Reson Imaging; 2012 Feb; 30(2):151-7. PubMed ID: 22055856 [TBL] [Abstract][Full Text] [Related]
17. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Deng J; Fishbein MH; Rigsby CK; Zhang G; Schoeneman SE; Donaldson JS Pediatr Radiol; 2014 Nov; 44(11):1379-87. PubMed ID: 24840769 [TBL] [Abstract][Full Text] [Related]
18. Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing. Pooler BD; Hernando D; Ruby JA; Ishii H; Shimakawa A; Reeder SB J Magn Reson Imaging; 2018 Dec; 48(6):1578-1585. PubMed ID: 29665193 [TBL] [Abstract][Full Text] [Related]
19. Detection of Traumatic Bone Marrow Lesions after Knee Trauma: Comparison of ADC Maps Derived from Diffusion-weighted Imaging with Standard Fat-saturated Proton Density-weighted Turbo Spin-Echo Sequences. Klengel A; Stumpp P; Klengel S; Böttger I; Rönisch N; Kahn T Radiology; 2017 May; 283(2):469-477. PubMed ID: 27775896 [TBL] [Abstract][Full Text] [Related]
20. Short T2 tissue imaging with the Pointwise Encoding Time reduction with Radial Acquisition (PETRA) sequence: the additional value of fat saturation and subtraction in the meniscus. Lee YH; Suh JS; Grodzki D Magn Reson Imaging; 2015 May; 33(4):385-9. PubMed ID: 25614216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]