These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23161499)
1. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site. Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499 [TBL] [Abstract][Full Text] [Related]
2. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site. Feng H; Qian Y; Gallagher FJ; Zhang W; Yu L; Liu C; Jones KW; Tappero R J Environ Sci (China); 2016 Mar; 41():172-182. PubMed ID: 26969063 [TBL] [Abstract][Full Text] [Related]
3. [Effects of exogenous iron on lead accumulation in Typha latifolia from a lead-contaminated soil]. Zhong SQ; Xu JM Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):78-82. PubMed ID: 23717993 [TBL] [Abstract][Full Text] [Related]
4. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692 [TBL] [Abstract][Full Text] [Related]
5. Synchrotron study of metal localization in Typha latifolia L. root sections. Qian Y; Feng H; Gallagher FJ; Zhu Q; Wu M; Liu CJ; Jones KW; Tappero RV J Synchrotron Radiat; 2015 Nov; 22(6):1459-68. PubMed ID: 26524311 [TBL] [Abstract][Full Text] [Related]
6. Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant Chi H; Yang L; Yang W; Li Y; Chen Z; Huang L; Chao Y; Qiu R; Wang S Int J Environ Res Public Health; 2018 Nov; 15(12):. PubMed ID: 30469475 [TBL] [Abstract][Full Text] [Related]
7. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. Anning AK; Korsah PE; Addo-Fordjour P Int J Phytoremediation; 2013; 15(5):452-64. PubMed ID: 23488171 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal. Yang Y; Shen Q Environ Sci Pollut Res Int; 2020 Feb; 27(5):4905-4916. PubMed ID: 31845259 [TBL] [Abstract][Full Text] [Related]
10. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Bonanno G; Cirelli GL Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817 [TBL] [Abstract][Full Text] [Related]
12. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics. Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480 [TBL] [Abstract][Full Text] [Related]
13. Spatial and temporal association of As and Fe species on aquatic plant roots. Hansel CM; La Force MJ; Fendorf S; Sutton S Environ Sci Technol; 2002 May; 36(9):1988-94. PubMed ID: 12026982 [TBL] [Abstract][Full Text] [Related]
14. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure]. Shen YT Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):818-22. PubMed ID: 25208420 [TBL] [Abstract][Full Text] [Related]
15. Phytomitigation potential and adaptive responses of helophyte Typha latifolia L. to copper smelter-influenced heavily multi-metal contamination. Shiryaev G; Maleva M; Borisova G; Tripti ; Voropaeva O; Kumar A Environ Sci Pollut Res Int; 2024 Jun; 31(27):38821-38834. PubMed ID: 36862298 [TBL] [Abstract][Full Text] [Related]
16. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Alonso-Castro AJ; Carranza-Alvarez C; Alfaro-De la Torre MC; Chávez-Guerrero L; García-De la Cruz RF Arch Environ Contam Toxicol; 2009 Nov; 57(4):688-96. PubMed ID: 19536587 [TBL] [Abstract][Full Text] [Related]
17. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation. Ferreira AD; Queiroz HM; Otero XL; Barcellos D; Bernardino ÂF; Ferreira TO J Hazard Mater; 2022 Apr; 428():128216. PubMed ID: 35033915 [TBL] [Abstract][Full Text] [Related]
18. Zn Speciation and Stable Isotope Fractionation in a Contaminated Urban Wetland Soil-Typha latifolia System. Aucour AM; Bedell JP; Queyron M; Tholé R; Lamboux A; Sarret G Environ Sci Technol; 2017 Aug; 51(15):8350-8358. PubMed ID: 27983820 [TBL] [Abstract][Full Text] [Related]
19. Arsenic sequestration by ferric iron plaque on cattail roots. Blute NK; Brabander DJ; Hemond HF; Sutton SR; Newville MG; Rivers ML Environ Sci Technol; 2004 Nov; 38(22):6074-7. PubMed ID: 15573609 [TBL] [Abstract][Full Text] [Related]
20. Removing heavy metals by in vitro cultures. Santos-Díaz Mdel S; Barrón-Cruz Mdel C Methods Mol Biol; 2012; 877():265-70. PubMed ID: 22610634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]