BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 23161514)

  • 1. Human sperm tail proteome suggests new endogenous metabolic pathways.
    Amaral A; Castillo J; Estanyol JM; Ballescà JL; Ramalho-Santos J; Oliva R
    Mol Cell Proteomics; 2013 Feb; 12(2):330-42. PubMed ID: 23161514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Pathways Associated with Sperm Biofunction Are Not Affected by the Presence of Round Cell and Leukocyte Proteins in Human Sperm Proteome.
    Panner Selvam MK; Agarwal A; Dias TR; Martins AD; Baskaran S; Samanta L
    J Proteome Res; 2019 Mar; 18(3):1191-1197. PubMed ID: 30595021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic profiling of stallion spermatozoa suggests changes in sperm metabolism and compromised redox regulation after cryopreservation.
    Martín-Cano FE; Gaitskell-Phillips G; Ortiz-Rodríguez JM; Silva-Rodríguez A; Román Á; Rojo-Domínguez P; Alonso-Rodríguez E; Tapia JA; Gil MC; Ortega-Ferrusola C; Peña FJ
    J Proteomics; 2020 Jun; 221():103765. PubMed ID: 32247875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteins involved in human sperm motility using high-throughput differential proteomics.
    Amaral A; Paiva C; Attardo Parrinello C; Estanyol JM; Ballescà JL; Ramalho-Santos J; Oliva R
    J Proteome Res; 2014 Dec; 13(12):5670-84. PubMed ID: 25250979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia.
    Hashemitabar M; Sabbagh S; Orazizadeh M; Ghadiri A; Bahmanzadeh M
    J Assist Reprod Genet; 2015 Jun; 32(6):853-63. PubMed ID: 25825237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the stallion sperm proteome by mass spectrometry.
    Swegen A; Curry BJ; Gibb Z; Lambourne SR; Smith ND; Aitken RJ
    Reproduction; 2015 Mar; 149(3):235-44. PubMed ID: 25504869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach.
    Zhu W; Zhang Y; Ren CH; Cheng X; Chen JH; Ge ZY; Sun ZP; Zhuo X; Sun FF; Chen YL; Jia XJ; Zhang Z
    J Proteomics; 2020 Jan; 210():103438. PubMed ID: 31271902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.
    Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V
    J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples.
    Yunes R; Doncel GF; Acosta AA
    Biocell; 2003 Apr; 27(1):29-36. PubMed ID: 12847912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes.
    Eubel H; Meyer EH; Taylor NL; Bussell JD; O'Toole N; Heazlewood JL; Castleden I; Small ID; Smith SM; Millar AH
    Plant Physiol; 2008 Dec; 148(4):1809-29. PubMed ID: 18931141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression characteristics of FAM71D and its association with sperm motility.
    Ma Q; Li Y; Luo M; Guo H; Lin S; Chen J; Du Y; Jiang Z; Gui Y
    Hum Reprod; 2017 Nov; 32(11):2178-2187. PubMed ID: 29025071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane.
    Leahy T; Rickard JP; Pini T; Gadella BM; de Graaf SP
    Proteomics; 2020 Jun; 20(12):e1900289. PubMed ID: 32383290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders.
    Wanders RJA; Vaz FM; Waterham HR; Ferdinandusse S
    Adv Exp Med Biol; 2020; 1299():55-70. PubMed ID: 33417207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabolism and action of L-carnitine: its possible role in sperm tail function].
    Lenzi A; Lombardo F; Gandini L; Dondero F
    Arch Ital Urol Nefrol Androl; 1992 Jun; 64(2):187-96. PubMed ID: 1509274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation.
    Loza-Huerta A; Vera-Estrella R; Darszon A; Beltrán C
    Biochim Biophys Acta; 2013 Nov; 1830(11):5305-15. PubMed ID: 23928041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of mitochondrial β-oxidation on early pea seedling development.
    Masterson C; Wood C
    New Phytol; 2009 Mar; 181(4):832-842. PubMed ID: 19140943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of flagellar cysteine-rich sperm proteins involved in motility, by the combination of cellular fractionation, fluorescence detection, and mass spectrometry analysis.
    Cabrillana ME; Monclus MA; Sáez Lancellotti TE; Boarelli PV; Clementi MA; Vincenti AE; Yunes RF; Fornés MW
    Cytoskeleton (Hoboken); 2011 Sep; 68(9):491-500. PubMed ID: 21780308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.
    Reddy JK; Hashimoto T
    Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of proteomes between diabetic and normal human sperm: Insights into the effects of diabetes on male reproduction based on the regulation of mitochondria-related proteins.
    An T; Wang YF; Liu JX; Pan YY; Liu YF; He ZC; Mo FF; Li J; Kang LH; Gu YJ; Lv BH; Gao SH; Jiang GJ
    Mol Reprod Dev; 2018 Jan; 85(1):7-16. PubMed ID: 29149484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodeling of skeletal muscle mitochondrial proteome with high-fat diet involves greater changes to β-oxidation than electron transfer proteins in mice.
    Dasari S; Newsom SA; Ehrlicher SE; Stierwalt HD; Robinson MM
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E425-E434. PubMed ID: 29812987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.