BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23161644)

  • 41. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.
    Patel S; Showers D; Vedantam P; Tzeng TR; Qian S; Xuan X
    Biomicrofluidics; 2012 Sep; 6(3):34102. PubMed ID: 23853679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes.
    Cetin B; Kang Y; Wu Z; Li D
    Electrophoresis; 2009 Mar; 30(5):766-72. PubMed ID: 19197898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DC electrokinetic particle transport in an L-shaped microchannel.
    Ai Y; Park S; Zhu J; Xuan X; Beskok A; Qian S
    Langmuir; 2010 Feb; 26(4):2937-44. PubMed ID: 19852473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules.
    Gencoglu A; Camacho-Alanis F; Nguyen VT; Nakano A; Ros A; Minerick AR
    Electrophoresis; 2011 Sep; 32(18):2436-47. PubMed ID: 21874654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels.
    Zhu J; Xuan X
    Biomicrofluidics; 2011 Jun; 5(2):24111. PubMed ID: 21792385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
    Gallo-Villanueva RC; Sano MB; Lapizco-Encinas BH; Davalos RV
    Electrophoresis; 2014 Feb; 35(2-3):352-61. PubMed ID: 24002905
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Separation of submicron bioparticles by dielectrophoresis.
    Morgan H; Hughes MP; Green NG
    Biophys J; 1999 Jul; 77(1):516-25. PubMed ID: 10388776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophoretic motion of ideally polarizable particles in a microchannel.
    Wu Z; Gao Y; Li D
    Electrophoresis; 2009 Mar; 30(5):773-81. PubMed ID: 19197897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation.
    Wang GJ; Hsu WH; Chang YZ; Yang H
    Biomed Microdevices; 2004 Mar; 6(1):47-53. PubMed ID: 15307444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear electrophoresis of nonspherical particles in a rectangular microchannel.
    Bentor J; Xuan X
    Electrophoresis; 2024 Apr; 45(7-8):712-719. PubMed ID: 37880863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions.
    Uddin MR; Chen X
    Biotechnol Prog; 2024; 40(3):e3437. PubMed ID: 38289677
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gravitation-driven stress-reduced cell handling.
    Boettcher M; Jaeger M; Kirschbaum M; Mueller T; Schnelle T; Duschl C
    Anal Bioanal Chem; 2008 Feb; 390(3):857-63. PubMed ID: 18066538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Traveling-wave electrophoresis for microfluidic separations.
    Edwards BF; Timperman AT; Carroll RL; Jo K; Mease JM; Schiffbauer JE
    Phys Rev Lett; 2009 Feb; 102(7):076103. PubMed ID: 19257694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of microstructures on a dielectrophoretic chip for trapping particles.
    Chuang CH; Hsu YM; Wei CH
    Electrophoresis; 2009 Sep; 30(17):3044-3052. PubMed ID: 19676085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Colloidal particle deposition from electrokinetic flow in a microfluidic channel.
    Unni HN; Yang C
    Electrophoresis; 2009 Mar; 30(5):732-41. PubMed ID: 19260008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
    Zhang C; Khoshmanesh K; Mitchell A; Kalantar-Zadeh K
    Anal Bioanal Chem; 2010 Jan; 396(1):401-20. PubMed ID: 19578834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.
    Davalos RV; McGraw GJ; Wallow TI; Morales AM; Krafcik KL; Fintschenko Y; Cummings EB; Simmons BA
    Anal Bioanal Chem; 2008 Feb; 390(3):847-55. PubMed ID: 17624517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.