These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23162055)

  • 21. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting Drug-Target Interactions with Neighbor Interaction Information and Discriminative Low-rank Representation.
    Peng L; Liao B; Zhu W; Li Z
    Curr Protein Pept Sci; 2018; 19(5):455-467. PubMed ID: 27829345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning the drug target-likeness of a protein.
    Xu H; Xu H; Lin M; Wang W; Li Z; Huang J; Chen Y; Chen X
    Proteomics; 2007 Dec; 7(23):4255-63. PubMed ID: 17963289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NL MIND-BEST: a web server for ligands and proteins discovery--theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum.
    González-Díaz H; Prado-Prado F; Sobarzo-Sánchez E; Haddad M; Maurel Chevalley S; Valentin A; Quetin-Leclercq J; Dea-Ayuela MA; Teresa Gomez-Muños M; Munteanu CR; José Torres-Labandeira J; García-Mera X; Tapia RA; Ubeira FM
    J Theor Biol; 2011 May; 276(1):229-49. PubMed ID: 21277861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep-Learning-Based Drug-Target Interaction Prediction.
    Wen M; Zhang Z; Niu S; Sha H; Yang R; Yun Y; Lu H
    J Proteome Res; 2017 Apr; 16(4):1401-1409. PubMed ID: 28264154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.
    Zhang W; Chen Y; Li D
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile.
    van Laarhoven T; Marchiori E
    PLoS One; 2013; 8(6):e66952. PubMed ID: 23840562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving compound-protein interaction prediction by building up highly credible negative samples.
    Liu H; Sun J; Guan J; Zheng J; Zhou S
    Bioinformatics; 2015 Jun; 31(12):i221-9. PubMed ID: 26072486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.
    Yamanishi Y; Kotera M; Kanehisa M; Goto S
    Bioinformatics; 2010 Jun; 26(12):i246-54. PubMed ID: 20529913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual affinity fingerprints for target fishing: a new application of Drug Profile Matching.
    Peragovics Á; Simon Z; Tombor L; Jelinek B; Hári P; Czobor P; Málnási-Csizmadia A
    J Chem Inf Model; 2013 Jan; 53(1):103-13. PubMed ID: 23215025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PTID: an integrated web resource and computational tool for agrochemical discovery.
    Gong J; Liu X; Cao X; Diao Y; Gao D; Li H; Qian X
    Bioinformatics; 2013 Jan; 29(2):292-4. PubMed ID: 23162083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting drug targets based on protein domains.
    Wang YY; Nacher JC; Zhao XM
    Mol Biosyst; 2012 Apr; 8(5):1528-34. PubMed ID: 22402667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similarity-based machine learning methods for predicting drug-target interactions: a brief review.
    Ding H; Takigawa I; Mamitsuka H; Zhu S
    Brief Bioinform; 2014 Sep; 15(5):734-47. PubMed ID: 23933754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noise reduction method for molecular interaction energy: application to in silico drug screening and in silico target protein screening.
    Fukunishi Y; Kubota S; Nakamura H
    J Chem Inf Model; 2006; 46(5):2071-84. PubMed ID: 16995738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.