These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23162065)

  • 1. Optic flow contribution to locomotion adjustments in obstacle avoidance.
    Pinheiro Menuchi MR; Bucken Gobbi LT
    Motor Control; 2012 Oct; 16(4):506-20. PubMed ID: 23162065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of travel speed on the visual control of steering toward a goal.
    Chen R; Niehorster DC; Li L
    J Exp Psychol Hum Percept Perform; 2018 Mar; 44(3):452-467. PubMed ID: 28816483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where and when do we look as we approach and step over an obstacle in the travel path?
    Patla AE; Vickers JN
    Neuroreport; 1997 Dec; 8(17):3661-5. PubMed ID: 9427347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction.
    Mulavara AP; Richards JT; Ruttley T; Marshburn A; Nomura Y; Bloomberg JJ
    Exp Brain Res; 2005 Oct; 166(2):210-9. PubMed ID: 16034569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obstacle avoidance during locomotion is unaffected in a patient with visual form agnosia.
    Patla AE; Goodale MA
    Neuroreport; 1996 Dec; 8(1):165-8. PubMed ID: 9051773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of visual feedback sampling on obstacle crossing behavior in people with Parkinson's disease.
    Vitório R; Lirani-Silva E; Barbieri FA; Raile V; Stella F; Gobbi LT
    Gait Posture; 2013 Jun; 38(2):330-4. PubMed ID: 23347768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual-vestibular influences on locomotor adjustments for stepping over an obstacle.
    McFadyen BJ; Bouyer L; Bent LR; Inglis JT
    Exp Brain Res; 2007 May; 179(2):235-43. PubMed ID: 17136529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to conflicting visual and physical heading directions during walking.
    Saunders JA; Durgin FH
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21427210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The direction of walking--but not throwing or kicking--is adapted by optic flow.
    Bruggeman H; Warren WH
    Psychol Sci; 2010 Jul; 21(7):1006-13. PubMed ID: 20511390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.