These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23162087)

  • 21. High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies.
    Aury JM; Cruaud C; Barbe V; Rogier O; Mangenot S; Samson G; Poulain J; Anthouard V; Scarpelli C; Artiguenave F; Wincker P
    BMC Genomics; 2008 Dec; 9():603. PubMed ID: 19087275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating genome assemblies with MAIA.
    Nijkamp J; Winterbach W; van den Broek M; Daran JM; Reinders M; de Ridder D
    Bioinformatics; 2010 Sep; 26(18):i433-9. PubMed ID: 20823304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps.
    Tsai IJ; Otto TD; Berriman M
    Genome Biol; 2010; 11(4):R41. PubMed ID: 20388197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extensive error in the number of genes inferred from draft genome assemblies.
    Denton JF; Lugo-Martinez J; Tucker AE; Schrider DR; Warren WC; Hahn MW
    PLoS Comput Biol; 2014 Dec; 10(12):e1003998. PubMed ID: 25474019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SWALO: scaffolding with assembly likelihood optimization.
    Rahman A; Pachter L
    Nucleic Acids Res; 2021 Nov; 49(20):e117. PubMed ID: 34417615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing.
    Dohm JC; Lottaz C; Borodina T; Himmelbauer H
    Genome Res; 2007 Nov; 17(11):1697-706. PubMed ID: 17908823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIS: a program to generate draft genome sequence scaffolds for prokaryotes.
    Dias Z; Dias U; Setubal JC
    BMC Bioinformatics; 2012 May; 13():96. PubMed ID: 22583530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.
    Farrant GK; Hoebeke M; Partensky F; Andres G; Corre E; Garczarek L
    BMC Bioinformatics; 2015 Sep; 16():281. PubMed ID: 26335184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pipeline for local assembly of minisatellite alleles from single-molecule sequencing data.
    Ogeh D; Badge R
    Bioinformatics; 2017 Mar; 33(5):650-653. PubMed ID: 27998939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage.
    Chakraborty M; Baldwin-Brown JG; Long AD; Emerson JJ
    Nucleic Acids Res; 2016 Nov; 44(19):e147. PubMed ID: 27458204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive evaluation of assembly scaffolding tools.
    Hunt M; Newbold C; Berriman M; Otto TD
    Genome Biol; 2014 Mar; 15(3):R42. PubMed ID: 24581555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies.
    Roach MJ; Schmidt SA; Borneman AR
    BMC Bioinformatics; 2018 Nov; 19(1):460. PubMed ID: 30497373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LRScaf: improving draft genomes using long noisy reads.
    Qin M; Wu S; Li A; Zhao F; Feng H; Ding L; Ruan J
    BMC Genomics; 2019 Dec; 20(1):955. PubMed ID: 31818249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.