These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23162710)

  • 1. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient.
    Hall G; Jacques SL; Eliceiri KW; Campagnola PJ
    Biomed Opt Express; 2012 Nov; 3(11):2707-19. PubMed ID: 23162710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of anisotropy coefficient and total attenuation of swine liver at 850 nm based on a goniometric technique: influence of sample thickness.
    Saccomandi P; Vogel V; Bazrafshan B; Schena E; Vogl TJ; Silvestri S; Mäntele W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5332-5. PubMed ID: 25571198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of anisotropy coefficient of swine pancreas, liver and muscle at 1064 nm based on goniometric technique.
    Saccomandi P; Vogel V; Bazrafshan B; Maurer J; Schena E; Vogl TJ; Silvestri S; Mäntele W
    J Biophotonics; 2015 May; 8(5):422-8. PubMed ID: 24995557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood.
    Kienle A; Patterson MS; Ott L; Steiner R
    Appl Opt; 1996 Jul; 35(19):3404-12. PubMed ID: 21102728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goniometric measurement for the estimation of anisotropy coefficient of human and animal pancreas.
    Saccomandi P; Schena E; Massaroni C; Di Matteo FM; Silvestri S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1283-6. PubMed ID: 26736502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Goniometer Paired with Digital Monte Carlo Twin to Determine the Optical Properties of Turbid Media.
    Stolz L; Beutel B; Kienle A; Foschum F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of scattering anisotropy on the properties of photon density waves.
    Luchinin AG; Kirillin MY
    Appl Opt; 2021 Jan; 60(1):33-40. PubMed ID: 33362070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.
    Yaroslavsky AN; Yaroslavsky IV; Goldbach T; Schwarzmaier HJ
    J Biomed Opt; 1999 Jan; 4(1):47-53. PubMed ID: 23015169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments.
    Piskozub J; Stramski D; Terrill E; Melville WK
    Appl Opt; 2004 Aug; 43(24):4723-31. PubMed ID: 15352398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heuristic model for ballistic photon detection in collimated transmittance measurements.
    Martelli F; Binzoni T
    Opt Express; 2018 Jan; 26(2):744-761. PubMed ID: 29401955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering.
    Witke T; Kuhn E; Teichert F; Goßler C; Schwarz UT; Thränhardt A
    J Biophotonics; 2024 Mar; 17(3):e202300358. PubMed ID: 38018656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission.
    Wang L; Jacques SL
    Phys Med Biol; 1994 Dec; 39(12):2349-54. PubMed ID: 15551558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues.
    Jacques SL; McCormick NJ
    Biomed Opt Express; 2023 Feb; 14(2):751-770. PubMed ID: 36874481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The Acceleration of Monte Carlo Simulation for Optical Transmission in Large Space Biological Tissue].
    Yang X; Li G; Liu Y; Zhao J; Lin L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3476-80. PubMed ID: 30198249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.