BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23163226)

  • 21. Characterization of thiolate-protected gold nanoparticles by mass spectrometry.
    Harkness KM; Cliffel DE; McLean JA
    Analyst; 2010 May; 135(5):868-74. PubMed ID: 20419232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles.
    Pattabi RM; Pattabi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):195-9. PubMed ID: 19577955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From ligand-stabilized gold nanoparticles to hybrid organic-inorganic superstructures.
    Hermes JP; Sanders F; Peterle T; Mayor M
    Chimia (Aarau); 2011; 65(4):219-22. PubMed ID: 21678765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical controlled reversible gold nanoparticles dissolution and reconstruction at room-temperature.
    Wang F; He C; Han MY; Wu JH; Xu GQ
    Chem Commun (Camb); 2012 Jun; 48(49):6136-8. PubMed ID: 22573052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold.
    Endo M; Yang Y; Emura T; Hidaka K; Sugiyama H
    Chem Commun (Camb); 2011 Oct; 47(38):10743-5. PubMed ID: 21869958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial discovery of cosolvent systems for production of narrow dispersion thiolate-protected gold nanoparticles.
    Wong OA; Compel WS; Ackerson CJ
    ACS Comb Sci; 2015 Jan; 17(1):11-8. PubMed ID: 25459632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode.
    Kannan P; John SA
    Anal Chim Acta; 2010 Mar; 663(2):158-64. PubMed ID: 20206005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution.
    Zhang S; Leem G; Srisombat LO; Lee TR
    J Am Chem Soc; 2008 Jan; 130(1):113-20. PubMed ID: 18072768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands.
    Kwak K; Kumar SS; Lee D
    Nanoscale; 2012 Jul; 4(14):4240-6. PubMed ID: 22592148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents.
    Bhatt N; Huang PJ; Dave N; Liu J
    Langmuir; 2011 May; 27(10):6132-7. PubMed ID: 21513322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capillary electrophoretic study of thiolated alpha-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions.
    Paau MC; Lo CK; Yang X; Choi MM
    J Chromatogr A; 2009 Nov; 1216(48):8557-62. PubMed ID: 19853853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directing the formation of nanostructured rings via local oxidation.
    Stannard A; Alhummiany H; Pauliac-Vaujour E; Sharp JS; Moriarty P; Thiele U
    Langmuir; 2010 Sep; 26(17):13892-6. PubMed ID: 20677735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The erratic emission of pyrene on gold nanoparticles.
    Battistini G; Cozzi PG; Jalkanen JP; Montalti M; Prodi L; Zaccheroni N; Zerbetto F
    ACS Nano; 2008 Jan; 2(1):77-84. PubMed ID: 19206550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triethylsilane as a mild and efficient reducing agent for the preparation of alkanethiol-capped gold nanoparticles.
    Sugie A; Somete T; Kanie K; Muramatsu A; Mori A
    Chem Commun (Camb); 2008 Sep; (33):3882-4. PubMed ID: 18726022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Water-Soluble, Thiolate-Protected Gold Nanoparticles Uniform in Size.
    Azubel M; Kornberg RD
    Nano Lett; 2016 May; 16(5):3348-51. PubMed ID: 27042759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile synthesis of water-soluble Au(25-x)Ag(x) nanoclusters protected by mono- and bi-thiolate ligands.
    Dou X; Yuan X; Yao Q; Luo Z; Zheng K; Xie J
    Chem Commun (Camb); 2014 Jul; 50(56):7459-62. PubMed ID: 24873969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles.
    Perumal S; Hofmann A; Scholz N; Rühl E; Graf C
    Langmuir; 2011 Apr; 27(8):4456-64. PubMed ID: 21413796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions.
    Hartlen KD; Ismaili H; Zhu J; Workentin MS
    Langmuir; 2012 Jan; 28(1):864-71. PubMed ID: 22085199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.