These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 23163324)
1. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Lorenzini M; Azzolini M; Tosi E; Zapparoli G J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324 [TBL] [Abstract][Full Text] [Related]
2. Filamentous fungi associated with natural infection of noble rot on withered grapes. Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687 [TBL] [Abstract][Full Text] [Related]
3. The Induction of Noble Rot ( Negri S; Lovato A; Boscaini F; Salvetti E; Torriani S; Commisso M; Danzi R; Ugliano M; Polverari A; Tornielli GB; Guzzo F Front Plant Sci; 2017; 8():1002. PubMed ID: 28680428 [TBL] [Abstract][Full Text] [Related]
4. Identification of potential protein markers of noble rot infected grapes. Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151 [TBL] [Abstract][Full Text] [Related]
5. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689 [TBL] [Abstract][Full Text] [Related]
6. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
7. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma. Lorenzini M; Cappello MS; Zapparoli G J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522 [TBL] [Abstract][Full Text] [Related]
8. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. Azzolini M; Tosi E; Faccio S; Lorenzini M; Torriani S; Zapparoli G FEMS Yeast Res; 2013 Sep; 13(6):540-52. PubMed ID: 23710966 [TBL] [Abstract][Full Text] [Related]
9. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
10. Impact of the Botrytis cinerea strain and metabolism on (-)-geosmin production by Penicillium expansum in grape juice. La Guerche S; De Senneville L; Blancard D; Darriet P Antonie Van Leeuwenhoek; 2007 Oct; 92(3):331-41. PubMed ID: 17562219 [TBL] [Abstract][Full Text] [Related]
11. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes. Lorenzini M; Cappello MS; Logrieco A; Zapparoli G Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387 [TBL] [Abstract][Full Text] [Related]
12. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217 [TBL] [Abstract][Full Text] [Related]
13. Study of amine composition of botrytized grape berries. Kiss J; Korbász M; Sass-Kiss A J Agric Food Chem; 2006 Nov; 54(23):8909-18. PubMed ID: 17090141 [TBL] [Abstract][Full Text] [Related]
14. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Lorenzini M; Mainente F; Zapparoli G; Cecconi D; Simonato B Food Chem; 2016 May; 199():639-47. PubMed ID: 26776019 [TBL] [Abstract][Full Text] [Related]
15. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Lleixà J; Kioroglou D; Mas A; Portillo MDC Int J Food Microbiol; 2018 Sep; 281():36-46. PubMed ID: 29807290 [TBL] [Abstract][Full Text] [Related]
16. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. Lorenzini M; Zapparoli G Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210 [TBL] [Abstract][Full Text] [Related]
17. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Simonato B; Lorenzini M; Cipriani M; Finato F; Zapparoli G Foods; 2019 Dec; 8(12):. PubMed ID: 31817273 [TBL] [Abstract][Full Text] [Related]
18. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. Zimdars S; Hitschler J; Schieber A; Weber F J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293 [TBL] [Abstract][Full Text] [Related]
20. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties. Rolle L; Giordano M; Giacosa S; Vincenzi S; Río Segade S; Torchio F; Perrone B; Gerbi V Anal Chim Acta; 2012 Jun; 732():105-13. PubMed ID: 22688041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]