BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23163324)

  • 1. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes.
    Lorenzini M; Azzolini M; Tosi E; Zapparoli G
    J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentous fungi associated with natural infection of noble rot on withered grapes.
    Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G
    Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Induction of Noble Rot (
    Negri S; Lovato A; Boscaini F; Salvetti E; Torriani S; Commisso M; Danzi R; Ugliano M; Polverari A; Tornielli GB; Guzzo F
    Front Plant Sci; 2017; 8():1002. PubMed ID: 28680428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of potential protein markers of noble rot infected grapes.
    Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B
    Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum.
    La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P
    Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma.
    Lorenzini M; Cappello MS; Zapparoli G
    J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines.
    Azzolini M; Tosi E; Faccio S; Lorenzini M; Torriani S; Zapparoli G
    FEMS Yeast Res; 2013 Sep; 13(6):540-52. PubMed ID: 23710966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the Botrytis cinerea strain and metabolism on (-)-geosmin production by Penicillium expansum in grape juice.
    La Guerche S; De Senneville L; Blancard D; Darriet P
    Antonie Van Leeuwenhoek; 2007 Oct; 92(3):331-41. PubMed ID: 17562219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes.
    Lorenzini M; Cappello MS; Logrieco A; Zapparoli G
    Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by
    Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A
    Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of amine composition of botrytized grape berries.
    Kiss J; Korbász M; Sass-Kiss A
    J Agric Food Chem; 2006 Nov; 54(23):8909-18. PubMed ID: 17090141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine.
    Lorenzini M; Mainente F; Zapparoli G; Cecconi D; Simonato B
    Food Chem; 2016 May; 199():639-47. PubMed ID: 26776019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes.
    Lleixà J; Kioroglou D; Mas A; Portillo MDC
    Int J Food Microbiol; 2018 Sep; 281():36-46. PubMed ID: 29807290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine.
    Simonato B; Lorenzini M; Cipriani M; Finato F; Zapparoli G
    Foods; 2019 Dec; 8(12):. PubMed ID: 31817273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.
    Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ
    Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity.
    Zimdars S; Hitschler J; Schieber A; Weber F
    J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties.
    Rolle L; Giordano M; Giacosa S; Vincenzi S; Río Segade S; Torchio F; Perrone B; Gerbi V
    Anal Chim Acta; 2012 Jun; 732():105-13. PubMed ID: 22688041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.