BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23163376)

  • 1. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: adiabatic description and effective mode approximation.
    Kopec S; Ottiger P; Leutwyler S; Köppel H
    J Chem Phys; 2012 Nov; 137(18):184312. PubMed ID: 23163376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: the electronic Davydov splittings cannot match experiment.
    Ottiger P; Leutwyler S; Köppel H
    J Chem Phys; 2012 May; 136(17):174308. PubMed ID: 22583231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer.
    Ottiger P; Leutwyler S
    J Chem Phys; 2012 Nov; 137(20):204303. PubMed ID: 23205999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitonic splitting, delocalization, and vibronic quenching in the benzonitrile dimer.
    Balmer FA; Ottiger P; Leutwyler S
    J Phys Chem A; 2014 Nov; 118(47):11253-61. PubMed ID: 25353324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The S1/S2 exciton interaction in 2-pyridone·6-methyl-2-pyridone: Davydov splitting, vibronic coupling, and vibronic quenching.
    Heid CG; Ottiger P; Leist R; Leutwyler S
    J Chem Phys; 2011 Oct; 135(15):154311. PubMed ID: 22029317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S(1)/S(2) excitonic splittings and vibronic coupling in the excited state of the jet-cooled 2-aminopyridine dimer.
    Ottiger P; Leutwyler S; Köppel H
    J Chem Phys; 2009 Nov; 131(20):204308. PubMed ID: 19947681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (HCl)2 and (HF)2 in small helium clusters: quantum solvation of hydrogen-bonded dimers.
    Jiang H; Sarsa A; Murdachaew G; Szalewicz K; Bacić Z
    J Chem Phys; 2005 Dec; 123(22):224313. PubMed ID: 16375482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies of the tunneling splitting of malonaldehyde using the multiconfiguration time-dependent Hartree approach.
    Schröder M; Gatti F; Meyer HD
    J Chem Phys; 2011 Jun; 134(23):234307. PubMed ID: 21702556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the S2←S0 vibronic spectrum of the ortho-cyanophenol dimer using a multimode vibronic coupling approach.
    Kopec S; Ottiger P; Leutwyler S; Köppel H
    J Chem Phys; 2015 Feb; 142(8):084308. PubMed ID: 25725732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio large-amplitude quantum-tunneling dynamics in vinyl radical: a vibrationally adiabatic approach.
    Nesbitt DJ; Dong F
    Phys Chem Chem Phys; 2008 Apr; 10(15):2113-22. PubMed ID: 18688365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reclassifying exciton-phonon coupling in molecular aggregates: evidence of strong nonadiabatic coupling in oligothiophene crystals.
    Spano FC; Silvestri L; Spearman P; Raimondo L; Tavazzi S
    J Chem Phys; 2007 Nov; 127(18):184703. PubMed ID: 18020654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2014 Nov; 141(17):174312. PubMed ID: 25381519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiconfigurational time-dependent Hartree calculations for tunneling splittings of vibrational states: Theoretical considerations and application to malonaldehyde.
    Hammer T; Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2009 Dec; 131(22):224109. PubMed ID: 20001026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitonic splittings in jet-cooled molecular dimers.
    Ottiger P; Leutwyler S
    Chimia (Aarau); 2011; 65(4):228-30. PubMed ID: 21678767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced-dimensional quantum approach to tunneling splittings using saddle-point normal coordinates.
    Kamarchik E; Wang Y; Bowman J
    J Phys Chem A; 2009 Jul; 113(26):7556-62. PubMed ID: 19552477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of the S2←S0 vibronic spectrum of the 2-pyridone dimer.
    Kopec S; Köppel H
    J Chem Phys; 2016 Jan; 144(2):024314. PubMed ID: 26772578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N(2)H(7) (+).
    García-Fernández P; García-Canales L; García-Lastra JM; Junquera J; Moreno M; Aramburu JA
    J Chem Phys; 2008 Sep; 129(12):124313. PubMed ID: 19045029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-trapping of the N-H vibrational mode in alpha-helical polypeptides.
    Tsivlin DV; May V
    J Chem Phys; 2006 Dec; 125(22):224902. PubMed ID: 17176162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer.
    Tiwari V; Jonas DM
    J Chem Phys; 2018 Feb; 148(8):084308. PubMed ID: 29495789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.