BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23163577)

  • 1. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.
    Stewart BD; Girardot C; Spycher N; Sani RK; Peyton BM
    Environ Sci Technol; 2013 Jan; 47(1):364-71. PubMed ID: 23163577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions.
    Sani RK; Peyton BM; Dohnalkova A; Amonette JE
    Environ Sci Technol; 2005 Apr; 39(7):2059-66. PubMed ID: 15871237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite.
    Ginder-Vogel M; Stewart B; Fendorf S
    Environ Sci Technol; 2010 Jan; 44(1):163-9. PubMed ID: 20039747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI).
    Stewart BD; Neiss J; Fendorf S
    J Environ Qual; 2007; 36(2):363-72. PubMed ID: 17255623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides.
    Ginder-Vogel M; Criddle CS; Fendorf S
    Environ Sci Technol; 2006 Jun; 40(11):3544-50. PubMed ID: 16786692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides.
    Pang C; Li Y; Wu H; Deng Z; Yuan S; Tan W
    J Environ Radioact; 2024 Feb; 272():107367. PubMed ID: 38171110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. XAFS investigation of the interactions of U(VI) with secondary mineralization products from the bioreduction of Fe(III) oxides.
    O'Loughlin EJ; Kelly SD; Kemner KM
    Environ Sci Technol; 2010 Mar; 44(5):1656-61. PubMed ID: 20146462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sediment bioreduction and reoxidation on uranium sorption.
    Liu C; Zachara JM; Zhong L; Kukkadupa R; Szecsody JE; Kennedy DW
    Environ Sci Technol; 2005 Jun; 39(11):4125-33. PubMed ID: 15984791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH.
    Zhong L; Liu C; Zachara JM; Kennedy DW; Szecsody JE; Wood B
    J Environ Qual; 2005; 34(5):1763-71. PubMed ID: 16151228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic simulations of uranium incorporation into iron (hydr)oxides.
    Kerisit S; Felmy AR; Ilton ES
    Environ Sci Technol; 2011 Apr; 45(7):2770-6. PubMed ID: 21391633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).
    Stewart BD; Amos RT; Fendorf S
    J Environ Qual; 2011; 40(1):90-7. PubMed ID: 21488497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides.
    Huang JH; Elzinga EJ; Brechbuehl Y; Voegelin A; Kretzschmar R
    Environ Sci Technol; 2011 Apr; 45(7):2804-10. PubMed ID: 21375285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.