BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23163733)

  • 1. Cu(II)-catalyzed aerobic hydroperoxidation of Meldrum's acid derivatives and application in intramolecular oxidation: a conceptual blueprint for O2/H2 dihydroxylation.
    Krabbe SW; Do DT; Johnson JS
    Org Lett; 2012 Dec; 14(23):5932-5. PubMed ID: 23163733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meldrum's acids and 5-alkylidene Meldrum's acids in catalytic carbon-carbon bond-forming processes.
    Dumas AM; Fillion E
    Acc Chem Res; 2010 Mar; 43(3):440-54. PubMed ID: 20000793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scandium triflate-catalyzed nucleophilic additions to indolylmethyl Meldrum's acid derivatives via a gramine-type fragmentation: synthesis of substituted indolemethanes.
    Armstrong EL; Grover HK; Kerr MA
    J Org Chem; 2013 Oct; 78(20):10534-40. PubMed ID: 24066671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing persistent intramolecular C-H...X (X = O, S, Br, Cl, and F) bonding in solution using benzyl Meldrum's acid derivatives.
    Fillion E; Wilsily A; Fishlock D
    J Org Chem; 2009 Feb; 74(3):1259-67. PubMed ID: 19113820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols.
    Nematollahi D; Shayani-jam H
    J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective perfluoro- and polyfluoroarylation of Meldrum's acid.
    Senaweera SM; Weaver JD
    J Org Chem; 2014 Nov; 79(21):10466-76. PubMed ID: 25271542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxidation of catechols in the presence of phenyl-Meldrum's acid. Synthesis and kinetic evaluation.
    Nematollahi D; Bamzadeh M; Shayani-Jam H
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):23-6. PubMed ID: 20045960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium(III)-catalyzed C2-selective carbenoid functionalization and subsequent C7-alkenylation of indoles.
    Shi J; Yan Y; Li Q; Xu HE; Yi W
    Chem Commun (Camb); 2014 Jun; 50(49):6483-6. PubMed ID: 24817249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.
    Hoover JM; Stahl SS
    J Am Chem Soc; 2011 Oct; 133(42):16901-10. PubMed ID: 21861488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups.
    Rajabimoghadam K; Darwish Y; Bashir U; Pitman D; Eichelberger S; Siegler MA; Swart M; Garcia-Bosch I
    J Am Chem Soc; 2018 Dec; 140(48):16625-16634. PubMed ID: 30400740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective rhodium-catalyzed conjugate alkynylation of 5-benzylidene Meldrum's acids with TMS-acetylene.
    Fillion E; Zorzitto AK
    J Am Chem Soc; 2009 Oct; 131(41):14608-9. PubMed ID: 19824719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.
    Hoover JM; Ryland BL; Stahl SS
    J Am Chem Soc; 2013 Feb; 135(6):2357-67. PubMed ID: 23317450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.
    Sharma P; Liu RS
    Chemistry; 2015 Mar; 21(12):4590-4. PubMed ID: 25657028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Reactions of N,N'-Diphenyldithiomalondiamide with Arylmethylidene Meldrum's Acids.
    Dotsenko VV; Aksenov AV; Sinotsko AE; Varzieva EA; Russkikh AA; Levchenko AG; Aksenov NA; Aksenova IV
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective synthesis of 3-hydroxy acids from Meldrum's acids using SmI2-H2O.
    Szostak M; Spain M; Procter DJ
    Nat Protoc; 2012 Apr; 7(5):970-7. PubMed ID: 22538848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.
    Sasano Y; Kogure N; Nishiyama T; Nagasawa S; Iwabuchi Y
    Chem Asian J; 2015 Apr; 10(4):1004-9. PubMed ID: 25620279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic routes to pyrrolizine-1,5-dione derivatives by flash vacuum pyrolysis of amidomethylene derivatives of Meldrum's acid.
    McNab H; Morrow M; Parsons S; Shannon DA; Withell K
    Org Biomol Chem; 2009 Dec; 7(23):4936-42. PubMed ID: 19907784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Multicomponent Polymerization and Postpolymerization Modification via an Effective Meldrum's Acid-Based Three-Component Reaction.
    Meng QY; Gao F; Mosad S; Zhang Z; You YZ; Hong CY
    Macromol Rapid Commun; 2021 Mar; 42(6):e2000610. PubMed ID: 33345361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.