These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23163752)

  • 21. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states.
    Sander B; Tria G; Shkumatov AV; Kim EY; Grossmann JG; Tessmer I; Svergun DI; Schindelin H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2050-60. PubMed ID: 24100323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterisation of the Volvox carteri Moco carrier protein.
    Hercher TW; Krausze J; Yang J; Kirk ML; Kruse T
    Biosci Rep; 2020 Nov; 40(11):. PubMed ID: 33084886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Function of Molybdenum Insertases.
    Kruse T
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The biosynthesis of the molybdenum cofactors.
    Mendel RR; Leimkühler S
    J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy.
    Dejanovic B; Djémié T; Grünewald N; Suls A; Kress V; Hetsch F; Craiu D; Zemel M; Gormley P; Lal D; ; Myers CT; Mefford HC; Palotie A; Helbig I; Meier JC; De Jonghe P; Weckhuysen S; Schwarz G
    EMBO Mol Med; 2015 Dec; 7(12):1580-94. PubMed ID: 26613940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural principles underlying molybdenum insertase complex assembly.
    Hassan AH; Ihling C; Iacobucci C; Kastritis PL; Sinz A; Kruse T
    Protein Sci; 2023 Sep; 32(9):e4753. PubMed ID: 37572332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis of dynamic glycine receptor clustering by gephyrin.
    Sola M; Bavro VN; Timmins J; Franz T; Ricard-Blum S; Schoehn G; Ruigrok RW; Paarmann I; Saiyed T; O'Sullivan GA; Schmitt B; Betz H; Weissenhorn W
    EMBO J; 2004 Jul; 23(13):2510-9. PubMed ID: 15201864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dimerization of the plant molybdenum insertase Cnx1E is required for synthesis of the molybdenum cofactor.
    Krausze J; Probst C; Curth U; Reichelt J; Saha S; Schafflick D; Heinz DW; Mendel RR; Kruse T
    Biochem J; 2017 Jan; 474(1):163-178. PubMed ID: 27803248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism.
    Kuper J; Llamas A; Hecht HJ; Mendel RR; Schwarz G
    Nature; 2004 Aug; 430(7001):803-6. PubMed ID: 15306815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA.
    Neumann M; Stöcklein W; Leimkühler S
    J Biol Chem; 2007 Sep; 282(39):28493-28500. PubMed ID: 17686778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell biology of molybdenum in plants and humans.
    Mendel RR; Kruse T
    Biochim Biophys Acta; 2012 Sep; 1823(9):1568-79. PubMed ID: 22370186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Chlamydomonas reinhardtii molybdenum cofactor enzyme crARC has a Zn-dependent activity and protein partners similar to those of its human homologue.
    Chamizo-Ampudia A; Galvan A; Fernandez E; Llamas A
    Eukaryot Cell; 2011 Oct; 10(10):1270-82. PubMed ID: 21803866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molybdate-uptake genes and molybdopterin-biosynthesis genes on a bacterial plasmid--characterization of MoeA as a filament-forming protein with adenosinetriphosphatase activity.
    Menéndez C; Otto A; Igloi G; Nick P; Brandsch R; Schubach B; Böttcher B; Brandsch R
    Eur J Biochem; 1997 Dec; 250(2):524-31. PubMed ID: 9428706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rescue of molybdenum cofactor biosynthesis in gephyrin-deficient mice by a Cnx1 transgene.
    Grosskreutz Y; Betz H; Kneussel M
    Biochem Biophys Res Commun; 2003 Feb; 301(2):450-5. PubMed ID: 12565882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin.
    Xiang S; Nichols J; Rajagopalan KV; Schindelin H
    Structure; 2001 Apr; 9(4):299-310. PubMed ID: 11525167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly.
    Llamas A; Otte T; Multhaup G; Mendel RR; Schwarz G
    J Biol Chem; 2006 Jul; 281(27):18343-50. PubMed ID: 16636046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aminopyrazine Pathway to the Moco Metabolite Dephospho Form A.
    Klewe A; Kruse T; Lindel T
    Chemistry; 2017 Aug; 23(47):11230-11233. PubMed ID: 28688127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli.
    Liu MT; Wuebbens MM; Rajagopalan KV; Schindelin H
    J Biol Chem; 2000 Jan; 275(3):1814-22. PubMed ID: 10636880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans.
    Millar LJ; Heck IS; Sloan J; Kana'n GJ; Kinghorn JR; Unkles SE
    Mol Genet Genomics; 2001 Nov; 266(3):445-53. PubMed ID: 11713674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.