These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 2316381)

  • 1. Uptake of ascorbic acid by freshly isolated cells and secretory granules from the intermediate lobe of ox hypophyses.
    Zhou A; Matsumoto T; Farver O; Thorn NA
    Acta Physiol Scand; 1990 Feb; 138(2):229-34. PubMed ID: 2316381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid uptake to isolated nerve terminals and secretory granules from ox neurohypophyses.
    Thorn NA; Christensen BL; Jeppesen C; Nielsen FS
    Acta Physiol Scand; 1985 May; 124(1):87-92. PubMed ID: 4013788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of dehydroascorbic acid and ascorbic acid to isolated nerve terminals and secretory granules from ox neurohypophyses.
    Thorn NA; Nielsen FS; Jeppesen CK; Christensen BL; Farver O
    Acta Physiol Scand; 1986 Dec; 128(4):629-38. PubMed ID: 3811987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of ascorbic acid uptake by isolated ox neurohypophyseal nerve terminals and the influence of glucocorticoid and tri-iodothyronine on uptake.
    Thorn NA; Nielsen FS; Jeppesen CK
    Acta Physiol Scand; 1991 Jan; 141(1):97-106. PubMed ID: 2053450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamines in nerve terminals and secretory granules isolated from neurohypophyses.
    Krøigaard M; Thams P; Thorn NA
    Acta Physiol Scand; 1992 Oct; 146(2):233-9. PubMed ID: 1442136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoids and tri-iodothyronine inhibit uptake of ascorbic acid to isolated nerve terminals from ox neurohypophyses.
    Thorn NA; Jeppesen CK; Nielsen FS
    Acta Physiol Scand; 1986 Dec; 128(4):643-4. PubMed ID: 3811989
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats.
    Zhou A; Nielsen JH; Farver O; Thorn NA
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):739-44. PubMed ID: 2012602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin binding to secretory granules isolated from bovine neurohypophyses.
    Olsen SF; Slaninova J; Treiman M; Saermark T; Thorn NA
    Acta Physiol Scand; 1983 Aug; 118(4):355-9. PubMed ID: 6314746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbic acid uptake and metabolism by corneal endothelium.
    Bode AM; Vanderpool SS; Carlson EC; Meyer DA; Rose RC
    Invest Ophthalmol Vis Sci; 1991 Jul; 32(8):2266-71. PubMed ID: 2071339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicle.
    Daniels AJ; Dean G; Viveros OH; Diliberto EJ
    Mol Pharmacol; 1983 Mar; 23(2):437-44. PubMed ID: 6835202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation-dependent uptake of an extracellular marker to subcellular fractions of isolated neurohypophysial tissue.
    Gratzl M; Russell JT; Thorn NA
    Experientia; 1983 Sep; 39(9):1007-9. PubMed ID: 6884487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and stability of ascorbic acid in pituitary cultures.
    Cullen EI; May V; Eipper BA
    Mol Cell Endocrinol; 1986 Dec; 48(2-3):239-50. PubMed ID: 3803708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanism of ascorbic acid transport in the aqueous humor].
    Helbig H; Korbmacher C; Wiederholt M
    Fortschr Ophthalmol; 1990; 87(4):421-4. PubMed ID: 2210577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential interaction of [35S]cysteamine with pituitary secretory granule storage forms of prolactin.
    Lorenson MY; Jacobs LS
    Neuroendocrinology; 1988 Apr; 47(4):358-64. PubMed ID: 3374761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of calmodulin-binding proteins on membranes of secretory granules isolated from bovine neurohypophyses.
    Chenoufi HL; Engberg E; Slaninová J; Thorn NA
    Acta Physiol Scand; 1986 May; 127(1):33-8. PubMed ID: 3728045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroserpin is expressed in the pituitary and adrenal glands and induces the extension of neurite-like processes in AtT-20 cells.
    Hill RM; Parmar PK; Coates LC; Mezey E; Pearson JF; Birch NP
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):595-601. PubMed ID: 10642518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss.
    Burke J; Handy RD
    J Exp Biol; 2005 Jan; 208(Pt 2):391-407. PubMed ID: 15634857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High ascorbic acid content in the rat endocrine pancreas.
    Zhou A; Thorn NA
    Diabetologia; 1991 Nov; 34(11):839-42. PubMed ID: 1769443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses.
    Russell JT; Thorn NA
    Acta Physiol Scand; 1975 Mar; 93(3):364-77. PubMed ID: 238361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.