BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23163881)

  • 1. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry.
    Albertazzi L; Gherardini L; Brondi M; Sulis Sato S; Bifone A; Pizzorusso T; Ratto GM; Bardi G
    Mol Pharm; 2013 Jan; 10(1):249-60. PubMed ID: 23163881
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wei X; Liu Z; Zhao Z
    Hell J Nucl Med; 2019; 22(1):78-79. PubMed ID: 30968863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.
    Kumar A; Yellepeddi VK; Vangara KK; Strychar KB; Palakurthi S
    J Drug Target; 2011 Nov; 19(9):770-80. PubMed ID: 21457075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface functionalisation regulates polyamidoamine dendrimer toxicity on blood-brain barrier cells and the modulation of key inflammatory receptors on microglia.
    Bertero A; Boni A; Gemmi M; Gagliardi M; Bifone A; Bardi G
    Nanotoxicology; 2014 Mar; 8(2):158-68. PubMed ID: 23298388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.
    Vidal F; Vásquez P; Díaz C; Nova D; Alderete J; Guzmán L
    Mol Pharm; 2016 Oct; 13(10):3395-3403. PubMed ID: 27556289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.
    Souza JG; Dias K; Silva SA; de Rezende LC; Rocha EM; Emery FS; Lopez RF
    J Control Release; 2015 Feb; 200():115-24. PubMed ID: 25553828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.
    Kim ID; Lim CM; Kim JB; Nam HY; Nam K; Kim SW; Park JS; Lee JK
    J Control Release; 2010 Mar; 142(3):422-30. PubMed ID: 19944723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and in vitro toxicity evaluation of G4 PAMAM dendrimer-risperidone complexes.
    Prieto MJ; Temprana CF; del Río Zabala NE; Marotta CH; Alonso Sdel V
    Eur J Med Chem; 2011 Mar; 46(3):845-50. PubMed ID: 21251731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells.
    Zeng Y; Kurokawa Y; Zeng Q; Win-Shwe TT; Nansai H; Zhang Z; Sone H
    Toxicol Sci; 2016 Jul; 152(1):128-44. PubMed ID: 27125967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing toxicity of polyamidoamine dendrimers by neuronal signaling functions.
    Nyitrai G; Kékesi O; Pál I; Keglevich P; Csíki Z; Fügedi P; Simon A; Fitos I; Németh K; Visy J; Tárkányi G; Kardos J
    Nanotoxicology; 2012 Sep; 6(6):576-86. PubMed ID: 21688971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.
    Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC
    J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain.
    Zarebkohan A; Najafi F; Moghimi HR; Hemmati M; Deevband MR; Kazemi B
    Eur J Pharm Sci; 2015 Oct; 78():19-30. PubMed ID: 26118442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAMAM Dendrimers Cross the Blood-Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice.
    Srinageshwar B; Peruzzaro S; Andrews M; Johnson K; Hietpas A; Clark B; McGuire C; Petersen E; Kippe J; Stewart A; Lossia O; Al-Gharaibeh A; Antcliff A; Culver R; Swanson D; Dunbar G; Sharma A; Rossignol J
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28335421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles.
    Wate PS; Banerjee SS; Jalota-Badhwar A; Mascarenhas RR; Zope KR; Khandare J; Misra RD
    Nanotechnology; 2012 Oct; 23(41):415101. PubMed ID: 23010805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insight into cell growth, internalization, and cytotoxicity of PAMAM dendrimers.
    Parimi S; Barnes TJ; Callen DF; Prestidge CA
    Biomacromolecules; 2010 Feb; 11(2):382-9. PubMed ID: 20038138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexes of dendrimers with bovine serum albumin.
    Mandeville JS; Tajmir-Riahi HA
    Biomacromolecules; 2010 Feb; 11(2):465-72. PubMed ID: 20085247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the binding of cationic lipids with dendrimers.
    Mandeville JS; Bourassa P; Tajmir-Riahi HA
    Biomacromolecules; 2013 Jan; 14(1):142-52. PubMed ID: 23130659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells.
    Zeng Y; Kurokawa Y; Win-Shwe TT; Zeng Q; Hirano S; Zhang Z; Sone H
    J Toxicol Sci; 2016; 41(3):351-70. PubMed ID: 27193728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Breast Cancer Cells with G4 PAMAM Dendrimers and Valproic Acid Derivative Complexes.
    Muñoz AM; Fragoso-Vázquez MJ; Martel BP; Chávez-Blanco A; Dueñas-González A; R García-Sánchez J; Bello M; Romero-Castro A; Correa-Basurto J
    Anticancer Agents Med Chem; 2020; 20(15):1857-1872. PubMed ID: 32324521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency.
    Yu GS; Bae YM; Choi H; Kong B; Choi IS; Choi JS
    Bioconjug Chem; 2011 Jun; 22(6):1046-55. PubMed ID: 21528924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.