These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23164523)

  • 1. Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: a comparative study using short and standard epoch lengths.
    Brignol A; Al-Ani T; Drouot X
    Comput Methods Programs Biomed; 2013 Mar; 109(3):227-38. PubMed ID: 23164523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic sleep scoring in normals and in individuals with neurodegenerative disorders according to new international sleep scoring criteria.
    Jensen PS; Sorensen HB; Leonthin HL; Jennum P
    J Clin Neurophysiol; 2010 Aug; 27(4):296-302. PubMed ID: 20634706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects.
    Ferri R; Bruni O; Miano S; Plazzi G; Terzano MG
    Clin Neurophysiol; 2005 Oct; 116(10):2429-40. PubMed ID: 16112901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG gamma frequency and sleep-wake scoring in mice: comparing two types of supervised classifiers.
    Brankack J; Kukushka VI; Vyssotski AL; Draguhn A
    Brain Res; 2010 Mar; 1322():59-71. PubMed ID: 20123089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines.
    Park Y; Luo L; Parhi KK; Netoff T
    Epilepsia; 2011 Oct; 52(10):1761-70. PubMed ID: 21692794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of normal and disturbed sleep by automatic analysis.
    Hasan J
    Acta Physiol Scand Suppl; 1983; 526():1-103. PubMed ID: 6588731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of the wake and stage 1 sleep stages using the EEG sub-epoch approach.
    Malaekah E; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6401-4. PubMed ID: 24111206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case.
    Romero S; Mañanas MA; Barbanoj MJ
    Comput Biol Med; 2008 Mar; 38(3):348-60. PubMed ID: 18222418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic sleep scoring: a search for an optimal combination of measures.
    Krakovská A; Mezeiová K
    Artif Intell Med; 2011 Sep; 53(1):25-33. PubMed ID: 21742473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic classification of sleep stages based on the time-frequency image of EEG signals.
    Bajaj V; Pachori RB
    Comput Methods Programs Biomed; 2013 Dec; 112(3):320-8. PubMed ID: 24008250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of neonate EEG sleep stages.
    Piryatinska A; Terdik G; Woyczynski WA; Loparo KA; Scher MS; Zlotnik A
    Comput Methods Programs Biomed; 2009 Jul; 95(1):31-46. PubMed ID: 19233504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Classification of human sleep stages based on EEG processing using hidden Markov models].
    Doroshenkov LG; Konyshev VA; Selishchev SV
    Med Tekh; 2007; (1):24-8. PubMed ID: 17419342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of sleep EEG in patients with restless legs syndrome.
    Hornyak M; Feige B; Voderholzer U; Riemann D
    Clin Neurophysiol; 2005 Jun; 116(6):1265-72. PubMed ID: 15978488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensor based singular spectrum analysis for automatic scoring of sleep EEG.
    Kouchaki S; Sanei S; Arbon EL; Dijk DJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):1-9. PubMed ID: 24951703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry.
    Bresler M; Sheffy K; Pillar G; Preiszler M; Herscovici S
    Physiol Meas; 2008 May; 29(5):571-84. PubMed ID: 18460762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C STAGE, automated sleep scoring: development and comparison with human sleep scoring for healthy older men and women.
    Prinz PN; Larsen LH; Moe KE; Dulberg EM; Vitiello MV
    Sleep; 1994 Dec; 17(8):711-7. PubMed ID: 7701182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reliable probabilistic sleep stager based on a single EEG signal.
    Flexer A; Gruber G; Dorffner G
    Artif Intell Med; 2005 Mar; 33(3):199-207. PubMed ID: 15811785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.