These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 23164576)
21. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440. Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111 [TBL] [Abstract][Full Text] [Related]
22. Fed-Batch Borrero-de Acuña JM; Rohde M; Saldias C; Poblete-Castro I Front Bioeng Biotechnol; 2021; 9():642023. PubMed ID: 33796510 [TBL] [Abstract][Full Text] [Related]
23. Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. Sun Z; Ramsay JA; Guay M; Ramsay B J Biotechnol; 2007 Nov; 132(3):280-2. PubMed ID: 17442441 [TBL] [Abstract][Full Text] [Related]
24. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100 [TBL] [Abstract][Full Text] [Related]
25. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226 [TBL] [Abstract][Full Text] [Related]
27. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Poblete-Castro I; Escapa IF; Jäger C; Puchalka J; Lam CM; Schomburg D; Prieto MA; Martins dos Santos VA Microb Cell Fact; 2012 Mar; 11():34. PubMed ID: 22433058 [TBL] [Abstract][Full Text] [Related]
28. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation. Manoli MT; Gargantilla-Becerra Á; Del Cerro Sánchez C; Rivero-Buceta V; Prieto MA; Nogales J Cell Rep; 2024 Apr; 43(4):113979. PubMed ID: 38517887 [TBL] [Abstract][Full Text] [Related]
29. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655 [TBL] [Abstract][Full Text] [Related]
31. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Escapa IF; del Cerro C; García JL; Prieto MA Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161 [TBL] [Abstract][Full Text] [Related]
32. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440. Oliva-Arancibia B; Órdenes-Aenishanslins N; Bruna N; Ibarra PS; Zacconi FC; Pérez-Donoso JM; Poblete-Castro I J Biotechnol; 2017 Dec; 264():29-37. PubMed ID: 29056529 [TBL] [Abstract][Full Text] [Related]
33. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis. Możejko-Ciesielska J; Mostek A Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Cha D; Ha HS; Lee SK Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015 [TBL] [Abstract][Full Text] [Related]
35. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Weimer A; Pause L; Ries F; Kohlstedt M; Adrian L; Krömer J; Lai B; Wittmann C Microb Cell Fact; 2024 Sep; 23(1):246. PubMed ID: 39261865 [TBL] [Abstract][Full Text] [Related]
36. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Escapa IF; García JL; Bühler B; Blank LM; Prieto MA Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632 [TBL] [Abstract][Full Text] [Related]
37. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440. Vo MT; Ko K; Ramsay B J Ind Microbiol Biotechnol; 2015 Apr; 42(4):637-46. PubMed ID: 25563970 [TBL] [Abstract][Full Text] [Related]