These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23164624)

  • 1. Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils.
    Lamichhane KM; Babcock RW; Turnbull SJ; Schenck S
    J Hazard Mater; 2012 Dec; 243():334-9. PubMed ID: 23164624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.
    Payne ZM; Lamichhane KM; Babcock RW; Turnbull SJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2023-9. PubMed ID: 24061783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation.
    Fuller ME; Hatzinger PB; Rungmakol D; Schuster RL; Steffan RJ
    Environ Toxicol Chem; 2004 Feb; 23(2):313-24. PubMed ID: 14982377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study.
    Alavi G; Chung M; Lichwa J; D'Alessio M; Ray C
    J Hazard Mater; 2011 Jan; 185(2-3):1600-4. PubMed ID: 21087822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrated lime for metals immobilization and explosives transformation: Treatability study.
    Martin WA; Larson SL; Nestler CC; Fabian G; O'Connor G; Felt DR
    J Hazard Mater; 2012 May; 215-216():280-6. PubMed ID: 22445717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils.
    Won J; Borden RC
    J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.
    Fuller ME; Schaefer CE; Steffan RJ
    Chemosphere; 2009 Nov; 77(8):1076-83. PubMed ID: 19765798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils.
    Sharma P; Mayes MA; Tang G
    Chemosphere; 2013 Aug; 92(8):993-1000. PubMed ID: 23602657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of microbial communities in four soil slurries capable of RDX degradation using illumina sequencing.
    Jayamani I; Cupples AM
    Biodegradation; 2015 Jun; 26(3):247-57. PubMed ID: 25913213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol.
    Adrian NR; Arnett CM
    Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.
    Jugnia LB; Manno D; Drouin K; Hendry M
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19436-19445. PubMed ID: 29728973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic biodegradation of high explosive hexahydro-1,3,5- trinitro-1,3,5-triazine by Janibacter cremeus isolated from contaminated soil.
    Kalsi A; Celin SM; Sharma JG
    Biotechnol Lett; 2020 Nov; 42(11):2299-2307. PubMed ID: 32572651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution kinetics of high explosives particles in a saturated sandy soil.
    Morley MC; Yamamoto H; Speitel GE; Clausen J
    J Contam Hydrol; 2006 May; 85(3-4):141-58. PubMed ID: 16530292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.
    Monteil-Rivera F; Halasz A; Manno D; Kuperman RG; Thiboutot S; Ampleman G; Hawari J
    Environ Pollut; 2009 Jan; 157(1):77-85. PubMed ID: 18801604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing.
    Andeer P; Stahl DA; Lillis L; Strand SE
    Environ Sci Technol; 2013 Sep; 47(18):10356-63. PubMed ID: 23909596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of explosives-related compounds using nickel catalysts.
    Fuller ME; Schaefer CE; Lowey JM
    Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.