BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 23164720)

  • 1. Engineering three-dimensional cell mechanical microenvironment with hydrogels.
    Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ
    Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogels and microtechnologies for engineering the cellular microenvironment.
    Gauvin R; Parenteau-Bareil R; Dokmeci MR; Merryman WD; Khademhosseini A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):235-46. PubMed ID: 22144036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
    Wang LS; Chung JE; Chan PP; Kurisawa M
    Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients.
    Wang L; Li Y; Huang G; Zhang X; Pingguan-Murphy B; Gao B; Lu TJ; Xu F
    Crit Rev Biotechnol; 2016; 36(3):553-65. PubMed ID: 25641330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice.
    Ruedinger F; Lavrentieva A; Blume C; Pepelanova I; Scheper T
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):623-36. PubMed ID: 25432676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of three-dimensional cell constructs using temperature-responsive hydrogel.
    Sasaki J; Asoh TA; Matsumoto T; Egusa H; Sohmura T; Alsberg E; Akashi M; Yatani H
    Tissue Eng Part A; 2010 Aug; 16(8):2497-504. PubMed ID: 20218862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Examination of Mechanical and Diffusional Effects on Cell Behavior Using a Decoupled 3D Hydrogel System.
    Kim S; Sim SB; Lee K; Cha C
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28691369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.
    Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ
    J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of multicellular organization in three-dimensional microenvironments.
    Albrecht DR; Underhill GH; Wassermann TB; Sah RL; Bhatia SN
    Nat Methods; 2006 May; 3(5):369-75. PubMed ID: 16628207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Approaches for Understanding Osteogenesis: Hydrogels as Synthetic Bone Microenvironments.
    Shapiro JM; Oyen ML
    Horm Metab Res; 2016 Nov; 48(11):726-736. PubMed ID: 27077459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photolabile hydrogel for guided three-dimensional cell growth and migration.
    Luo Y; Shoichet MS
    Nat Mater; 2004 Apr; 3(4):249-53. PubMed ID: 15034559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture.
    Bhattacharya M; Malinen MM; Lauren P; Lou YR; Kuisma SW; Kanninen L; Lille M; Corlu A; GuGuen-Guillouzo C; Ikkala O; Laukkanen A; Urtti A; Yliperttula M
    J Control Release; 2012 Dec; 164(3):291-8. PubMed ID: 22776290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate.
    Ma Y; Lin M; Huang G; Li Y; Wang S; Bai G; Lu TJ; Xu F
    Adv Mater; 2018 Dec; 30(49):e1705911. PubMed ID: 30063260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogels for in vivo-like three-dimensional cellular studies.
    DeVolder R; Kong HJ
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(4):351-65. PubMed ID: 22615143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering mechanical microenvironment of macrophage and its biomedical applications.
    Li J; Li Y; Gao B; Qin C; He Y; Xu F; Yang H; Lin M
    Nanomedicine (Lond); 2018 Mar; 13(5):555-576. PubMed ID: 29334336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro.
    Turunen S; Haaparanta AM; Aänismaa R; Kellomäki M
    J Tissue Eng Regen Med; 2013 Apr; 7(4):253-70. PubMed ID: 22213735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity.
    Nemir S; Hayenga HN; West JL
    Biotechnol Bioeng; 2010 Feb; 105(3):636-44. PubMed ID: 19816965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in bioactive hydrogels to probe and direct cell fate.
    DeForest CA; Anseth KS
    Annu Rev Chem Biomol Eng; 2012; 3():421-44. PubMed ID: 22524507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.