These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23164863)

  • 1. Microwave spectral analysis based on photonic compressive sampling with random demodulation.
    Chi H; Mei Y; Chen Y; Wang D; Zheng S; Jin X; Zhang X
    Opt Lett; 2012 Nov; 37(22):4636-8. PubMed ID: 23164863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave spectrum sensing based on photonic time stretch and compressive sampling.
    Chi H; Chen Y; Mei Y; Jin X; Zheng S; Zhang X
    Opt Lett; 2013 Jan; 38(2):136-8. PubMed ID: 23454940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic compressive sensing of sparse radio frequency signals with a single dual-electrode Mach-Zehnder modulator.
    Yang B; Yang S; Cao Z; Ou J; Zhai Y; Chi H
    Opt Lett; 2020 Oct; 45(20):5708-5711. PubMed ID: 33057265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wideband sparse signal acquisition with ultrahigh sampling compression ratio based on continuous-time photonic time stretch and photonic compressive sampling.
    Yang B; Xu Q; Yang S; Chi H
    Appl Opt; 2022 Feb; 61(6):1344-1348. PubMed ID: 35201015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instantaneous frequency measurement based on photonic compressive sensing with sub-Nyquist pseudo-random binary sequences.
    Li R; Yang S; Yang B; Gao Y; He H; Chi H
    Opt Lett; 2024 Apr; 49(7):1832-1835. PubMed ID: 38560876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave photonic radar for distance and velocity measurement based on optical mixing and compressive sensing.
    Ding Y; Guo S; Zhou W; Dong W
    Appl Opt; 2021 Sep; 60(27):8534-8539. PubMed ID: 34612956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave photonic multiform microwave frequency shift keying signal generator.
    Feng K; Li N; Wang G; Xiao J; Jiang W
    Opt Express; 2022 Sep; 30(20):36265-36282. PubMed ID: 36258559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses.
    Bosworth BT; Stroud JR; Tran DN; Tran TD; Chin S; Foster MA
    Opt Lett; 2015 Jul; 40(13):3045-8. PubMed ID: 26125363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of compressive sensing with optical mixing using a spatial light modulator.
    Zhu Z; Chi H; Zheng S; Jin T; Jin X; Zhang X
    Appl Opt; 2015 Mar; 54(8):1894-9. PubMed ID: 25968363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonics-enabled compressive sensing with spectral encoding using an incoherent broadband source.
    Zhu Z; Chi H; Jin T; Zheng S; Yu X; Jin X; Zhang X
    Opt Lett; 2018 Jan; 43(2):330-333. PubMed ID: 29328274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband microwave phase noise measurement based on photonic-assisted I/Q mixing and digital phase demodulation.
    Zhang F; Shi J; Pan S
    Opt Express; 2017 Sep; 25(19):22760-22768. PubMed ID: 29041582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient modal analysis using compressive optical interferometry.
    Mardani D; Abouraddy AF; Atia GK
    Opt Express; 2015 Nov; 23(22):28449-58. PubMed ID: 26561116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic distributed compressive sampling of multi-node wideband sparse radio frequency signals.
    Yang B; Liu Z; Zhang Y; Dai W; Zhai Y; Yang S; Chi H
    Opt Express; 2023 Dec; 31(26):42878-42886. PubMed ID: 38178396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive sensing based on optical mixing using a spectral shaper with bipolar coding.
    Chi H; Zhou H; Yang S; Ou J; Zhai Y; Yang B
    Opt Express; 2021 May; 29(11):16422-16431. PubMed ID: 34154205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiband signal reconstruction for random equivalent sampling.
    Zhao YJ; Liu CJ
    Rev Sci Instrum; 2014 Oct; 85(10):105109. PubMed ID: 25362458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed, rate-scalable photonic-assisted digitizer equalization by frequency comb referencing.
    Wiberg AO; Esman DJ; Temprana E; Myslivets E; Kuo BP; Alic N; Radic S
    Opt Express; 2014 Sep; 22(18):21227-35. PubMed ID: 25321503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WINDOW: wideband demodulator for optical waveforms.
    Lev O; Wiener T; Cohen D; Eldar YC
    Opt Express; 2017 Aug; 25(16):19444-19456. PubMed ID: 29041138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping.
    Zhang F; Ge X; Pan S; Yao J
    Opt Lett; 2013 Oct; 38(20):4256-9. PubMed ID: 24321973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beating Nyquist with light: a compressively sampled photonic link.
    Nichols JM; Bucholtz F
    Opt Express; 2011 Apr; 19(8):7339-48. PubMed ID: 21503044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator.
    Long Y; Zhou L; Wang J
    Sci Rep; 2016 Feb; 6():20215. PubMed ID: 26832305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.