These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23164888)

  • 1. In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon.
    Rai P; Hartmann N; Berthelot J; Colas-des-Francs G; Hartschuh A; Bouhelier A
    Opt Lett; 2012 Nov; 37(22):4711-3. PubMed ID: 23164888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon polariton amplification in a single-walled carbon nanotube.
    Kadochkin AS; Moiseev SG; Dadoenkova YS; Svetukhin VV; Zolotovskii IO
    Opt Express; 2017 Oct; 25(22):27165-27171. PubMed ID: 29092195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.
    Evans CI; Zolotavin P; Alabastri A; Yang J; Nordlander P; Natelson D
    Nano Lett; 2017 Sep; 17(9):5646-5652. PubMed ID: 28796525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote excitation and detection of surface-enhanced Raman scattering from graphene.
    Coca-López N; Hartmann NF; Mancabelli T; Kraus J; Günther S; Comin A; Hartschuh A
    Nanoscale; 2018 Jun; 10(22):10498-10504. PubMed ID: 29799601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit.
    Chen J; Sun C; Li H; Gong Q
    Nanoscale; 2014 Nov; 6(22):13487-93. PubMed ID: 25204379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox properties of a single (7,5)single-walled carbon nanotube determined by an in situ photoluminescence spectroelectrochemical method.
    Hong L; Mouri S; Miyauchi Y; Matsuda K; Nakashima N
    Nanoscale; 2014 Nov; 6(21):12798-804. PubMed ID: 25226303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates.
    Luo S; Yang H; Yang Y; Zhao D; Chen X; Qiu M; Li Q
    Sci Rep; 2015 Aug; 5():13424. PubMed ID: 26302955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
    Foley Iv JJ; Harutyunyan H; Rosenmann D; Divan R; Wiederrecht GP; Gray SK
    Sci Rep; 2015 Apr; 5():9929. PubMed ID: 25905685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes.
    Zhou W; Zhang X; Zhang Y; Tian C; Xu C
    Opt Express; 2017 Dec; 25(25):32142-32149. PubMed ID: 29245878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films.
    Wang Y; Liu X; Whitmore D; Xing W; Potma EO
    Opt Express; 2011 Jul; 19(14):13454-63. PubMed ID: 21747501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Organic Semiconductor-Surface Plasmon Polariton Coupling with Molecular Orientation.
    Brown SJ; DeCrescent RA; Nakazono DM; Willenson SH; Ran NA; Liu X; Bazan GC; Nguyen TQ; Schuller JA
    Nano Lett; 2017 Oct; 17(10):6151-6156. PubMed ID: 28910110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing.
    Renger J; Quidant R; van Hulst N; Palomba S; Novotny L
    Phys Rev Lett; 2009 Dec; 103(26):266802. PubMed ID: 20366329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Visualization of Counter-Propagating Surface Plasmons in Real Space-Time.
    Crampton KT; Joly AG; El-Khoury PZ
    J Phys Chem Lett; 2019 Oct; 10(19):5694-5699. PubMed ID: 31498629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fundamental study of photoluminescence modulation from DNA-wrapped single-walled carbon nanotubes.
    Oura S; Ito M; Homma Y; Umemura K
    Eur Biophys J; 2018 Jul; 47(5):523-530. PubMed ID: 29159501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Induced Selective Oxidation Reaction at Single-Walled Carbon Nanotubes.
    Yasuda S; Yoshii T; Chiashi S; Maruyama S; Murakoshi K
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38992-38998. PubMed ID: 29027459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon polariton beams from an electrically excited plasmonic crystal.
    Canneson D; Le Moal E; Cao S; Quélin X; Dallaporta H; Dujardin G; Boer-Duchemin E
    Opt Express; 2016 Nov; 24(23):26186-26200. PubMed ID: 27857355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary plasmonics: launching surface plasmon polaritons to a desired pattern.
    Zhao C; Zhang J
    Opt Lett; 2009 Aug; 34(16):2417-9. PubMed ID: 19684801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.