BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 23164947)

  • 1. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors.
    Zheng H; Zhan XQ; Bian QN; Zhang XJ
    Chem Commun (Camb); 2013 Jan; 49(5):429-47. PubMed ID: 23164947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new class of rhodamine luminophores: design, syntheses and aggregation-induced emission enhancement.
    Kamino S; Horio Y; Komeda S; Minoura K; Ichikawa H; Horigome J; Tatsumi A; Kaji S; Yamaguchi T; Usami Y; Hirota S; Enomoto S; Fujita Y
    Chem Commun (Camb); 2010 Dec; 46(47):9013-5. PubMed ID: 21057677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.
    Grimm JB; Sung AJ; Legant WR; Hulamm P; Matlosz SM; Betzig E; Lavis LD
    ACS Chem Biol; 2013; 8(6):1303-10. PubMed ID: 23557713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic properties of fluorescein and rhodamine dyes attached to DNA.
    Delgadillo RF; Parkhurst LJ
    Photochem Photobiol; 2010; 86(2):261-72. PubMed ID: 20003160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment.
    Savarese M; Aliberti A; De Santo I; Battista E; Causa F; Netti PA; Rega N
    J Phys Chem A; 2012 Jul; 116(28):7491-7. PubMed ID: 22667332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures.
    Kurian A; George SD; Bindhu CV; Nampoori VP; Vallabhan CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):678-82. PubMed ID: 17045520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
    Blom H; Chmyrov A; Hassler K; Davis LM; Widengren J
    J Phys Chem A; 2009 May; 113(19):5554-66. PubMed ID: 19374408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon absorption cross-sections of reference dyes: a critical examination.
    Chandra Jha P; Wang Y; Agren H
    Chemphyschem; 2008 Jan; 9(1):111-6. PubMed ID: 18072231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.
    Zhou P; Ning C; Alsaedi A; Han K
    Chemphyschem; 2016 Oct; 17(19):3139-3145. PubMed ID: 27459670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotaxane-type resorcinarene tetramers as histone-sensing fluorescent receptors.
    Hayashida O; Uchiyama M
    Org Biomol Chem; 2008 Sep; 6(17):3166-70. PubMed ID: 18698476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boronic acid-linked fluorescent and colorimetric probes for copper ions.
    Swamy KM; Ko SK; Kwon SK; Lee HN; Mao C; Kim JM; Lee KH; Kim J; Shin I; Yoon J
    Chem Commun (Camb); 2008 Dec; (45):5915-7. PubMed ID: 19030537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric and Reduced Xanthene Fluorophores: Synthesis, Photochemical Properties, and Application to Activatable Fluorescent Probes for Detection of Nitroreductase.
    More KN; Lim TH; Kang J; Yun H; Yee ST; Chang DJ
    Molecules; 2019 Sep; 24(17):. PubMed ID: 31484448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.
    Kolmakov K; Wurm CA; Meineke DN; Göttfert F; Boyarskiy VP; Belov VN; Hell SW
    Chemistry; 2014 Jan; 20(1):146-57. PubMed ID: 24338798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY; Belov VN; Bossi ML; Wurm CA; Meyer L; Medda R; Moneron G; Bretschneider S; Eggeling C; Jakobs S; Hell SW
    Chemistry; 2010 Apr; 16(15):4477-88. PubMed ID: 20309973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new rhodamine B-based lysosomal pH fluorescent indicator.
    Lv HS; Huang SY; Zhao BX; Miao JY
    Anal Chim Acta; 2013 Jul; 788():177-82. PubMed ID: 23845498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment.
    Boyarskiy VP; Belov VN; Medda R; Hein B; Bossi M; Hell SW
    Chemistry; 2008; 14(6):1784-92. PubMed ID: 18058955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.