BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 23165187)

  • 1. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing.
    Péry AR; Desmots S; Mombelli E
    Regul Toxicol Pharmacol; 2010 Feb; 56(1):82-92. PubMed ID: 19766156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the dawn of nanoecotoxicological research.
    Kahru A; Ivask A
    Acc Chem Res; 2013 Mar; 46(3):823-33. PubMed ID: 23148404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the nature, evolution and future of quantitative structure-activity relationships (QSAR) in toxicology.
    Veith GD
    SAR QSAR Environ Res; 2004; 15(5-6):323-30. PubMed ID: 15669692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico toxicology for the pharmaceutical sciences.
    Valerio LG
    Toxicol Appl Pharmacol; 2009 Dec; 241(3):356-70. PubMed ID: 19716836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical structure of mutagens and carcinogens and the relationship with biological activity.
    Benigni R
    J Exp Clin Cancer Res; 2004 Mar; 23(1):5-8. PubMed ID: 15149144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive models for nanotoxicology: current challenges and future opportunities.
    Clark KA; White RH; Silbergeld EK
    Regul Toxicol Pharmacol; 2011 Apr; 59(3):361-3. PubMed ID: 21310205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico-aided prediction of biological properties of chemicals: oestrogen receptor-mediated effects.
    Roncaglioni A; Benfenati E
    Chem Soc Rev; 2008 Mar; 37(3):441-50. PubMed ID: 18224255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity.
    Benigni R; Richard AM
    Methods; 1998 Mar; 14(3):264-76. PubMed ID: 9571083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From QSAR to QSIIR: searching for enhanced computational toxicology models.
    Zhu H
    Methods Mol Biol; 2013; 930():53-65. PubMed ID: 23086837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico modelling of hazard endpoints: current problems and perspectives.
    Mekenyan O; Dimitrov S; Schmieder P; Veith G
    SAR QSAR Environ Res; 2003; 14(5-6):361-71. PubMed ID: 14758980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.