These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 23165187)

  • 41. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.
    Kar S; Roy K
    Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational approaches to chemical hazard assessment.
    Luechtefeld T; Hartung T
    ALTEX; 2017; 34(4):459-478. PubMed ID: 29101769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials.
    Winkler DA
    Toxicol Appl Pharmacol; 2016 May; 299():96-100. PubMed ID: 26723909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future.
    Rivera Gil P; Oberdörster G; Elder A; Puntes V; Parak WJ
    ACS Nano; 2010 Oct; 4(10):5527-31. PubMed ID: 20973573
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ToxCast program for prioritizing toxicity testing of environmental chemicals.
    Dix DJ; Houck KA; Martin MT; Richard AM; Setzer RW; Kavlock RJ
    Toxicol Sci; 2007 Jan; 95(1):5-12. PubMed ID: 16963515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology.
    Puzyn T; Jeliazkova N; Sarimveis H; Marchese Robinson RL; Lobaskin V; Rallo R; Richarz AN; Gajewicz A; Papadopulos MG; Hastings J; Cronin MTD; Benfenati E; Fernández A
    Food Chem Toxicol; 2018 Feb; 112():478-494. PubMed ID: 28943385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals.
    Fjodorova N; Vracko M; Jezierska A; Novic M
    SAR QSAR Environ Res; 2010 Jan; 21(1):57-75. PubMed ID: 20373214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Acute intravenous toxicity to mice calculations on the basis local regression models in superoverlapping clusters (LRMSC)].
    Raevskiĭ OA; Grigor'ev VIu; Liplavskaia EA; Vorts AP
    Biomed Khim; 2012; 58(5):489-500. PubMed ID: 23289291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational toxicology: Its essential role in reducing drug attrition.
    Naven RT; Louise-May S
    Hum Exp Toxicol; 2015 Dec; 34(12):1304-9. PubMed ID: 26614820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern.
    Bars R; Fegert I; Gross M; Lewis D; Weltje L; Weyers A; Wheeler JR; Galay-Burgos M
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):143-54. PubMed ID: 22735369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments.
    Wu S; Blackburn K; Amburgey J; Jaworska J; Federle T
    Regul Toxicol Pharmacol; 2010 Feb; 56(1):67-81. PubMed ID: 19770017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials.
    Buglak AA; Zherdev AV; Dzantiev BB
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticles toxicity and their routes of exposures.
    Yah CS; Simate GS; Iyuke SE
    Pak J Pharm Sci; 2012 Apr; 25(2):477-91. PubMed ID: 22459480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toxicity assessment of nanomaterials: methods and challenges.
    Dhawan A; Sharma V
    Anal Bioanal Chem; 2010 Sep; 398(2):589-605. PubMed ID: 20652549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterisation of the chemical and biological properties of molecules with QSAR/QSPR and chemical grouping, and its application to a group of alkyl ethers.
    Niska H; Tuppurainen K; Skon JP; Mallett AK; Kolehmainen M
    SAR QSAR Environ Res; 2008; 19(3-4):263-84. PubMed ID: 18484498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.