These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23165429)

  • 1. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
    Naieni AK; Nojeh A
    Nanotechnology; 2012 Dec; 23(49):495606. PubMed ID: 23165429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
    Shekhar S; Stokes P; Khondaker SI
    ACS Nano; 2011 Mar; 5(3):1739-46. PubMed ID: 21323326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.
    Berger SD; McGruer NE; Adams GG
    Nanotechnology; 2015 Apr; 26(15):155602. PubMed ID: 25804394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO-based FBAR resonators with carbon nanotube electrodes.
    GarcĂ­a-Gancedo L; Al-Naimi F; Flewitt AJ; Milne WI; Ashley GM; Luo JK; Zhao X; Lu JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2438-45. PubMed ID: 22083776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of long carbon nanotube bridges across transparent electrodes using novel thickness-controlled dielectrophoresis.
    Abdulhameed A; Mohtar MN; Hamidon MN; Halin IA
    Electrophoresis; 2022 Feb; 43(3):487-494. PubMed ID: 34679198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis.
    Park S; Koklu M; Beskok A
    Anal Chem; 2009 Mar; 81(6):2303-10. PubMed ID: 19215119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant transport through a carbon nanotube junction exposed to an ac field.
    Shafranjuk SE
    J Phys Condens Matter; 2011 Dec; 23(49):495304. PubMed ID: 22109843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk electrical properties of single-walled carbon nanotubes immobilized by dielectrophoresis: evidence of metallic or semiconductor behavior.
    Mureau N; Watts PC; Tison Y; Silva SR
    Electrophoresis; 2008 Jun; 29(11):2266-71. PubMed ID: 18548459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array.
    Ma W; Shi T; Tang Z; Liu S; Malik R; Zhang L
    Electrophoresis; 2011 Feb; 32(5):494-505. PubMed ID: 21298672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes.
    Jiang Z; Mihovilovic M; Chan J; Stein D
    J Phys Condens Matter; 2010 Nov; 22(45):454114. PubMed ID: 21339601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.
    Sarker BK; Khondaker SI
    ACS Nano; 2012 Jun; 6(6):4993-9. PubMed ID: 22559008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity.
    Zhang Y; Ronning F; Gofryk K; Mara NA; Haberkorn N; Zou G; Wang H; Lee JH; Bauer E; McCleskey TM; Burell AK; Civale L; Zhu YT; Jia Q
    Nanoscale; 2012 Apr; 4(7):2268-71. PubMed ID: 22370969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.
    Ye T; Li H; Lam KY
    Electrophoresis; 2015 Feb; 36(3):378-85. PubMed ID: 24981085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and material determinants of patterning efficiency by dielectrophoresis.
    Albrecht DR; Sah RL; Bhatia SN
    Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.