These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23165429)

  • 21. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.
    Tulevski GS; Franklin AD; Afzali A
    ACS Nano; 2013 Apr; 7(4):2971-6. PubMed ID: 23484490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotube-based hot-film and temperature sensor assembled by optically-induced dielectrophoresis.
    Hsu MC; Hsu MC; Lee GB
    IET Nanobiotechnol; 2014 Mar; 8(1):44-50. PubMed ID: 24888191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue engineering with electric fields: investigation of the shape of mammalian cell aggregates formed at interdigitated oppositely castellated electrodes.
    Sebastian A; Venkatesh AG; Markx GH
    Electrophoresis; 2007 Nov; 28(21):3821-8. PubMed ID: 17960834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferroelectric-carbon nanotube memory devices.
    Kumar A; Shivareddy SG; Correa M; Resto O; Choi Y; Cole MT; Katiyar RS; Scott JF; Amaratunga GA; Lu H; Gruverman A
    Nanotechnology; 2012 Apr; 23(16):165702. PubMed ID: 22460805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetically induced field effect in carbon nanotube devices.
    Fedorov G; Tselev A; Jiménez D; Latil S; Kalugin NG; Barbara P; Smirnov D; Roche S
    Nano Lett; 2007 Apr; 7(4):960-4. PubMed ID: 17385934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multilayer contactless dielectrophoresis: theoretical considerations.
    Sano MB; Salmanzadeh A; Davalos RV
    Electrophoresis; 2012 Jul; 33(13):1938-46. PubMed ID: 22806458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
    Zhou R; Wang P; Chang HC
    Electrophoresis; 2006 Apr; 27(7):1376-85. PubMed ID: 16568404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes.
    Bao WS; Meguid SA; Zhu ZH; Meguid MJ
    Nanotechnology; 2011 Dec; 22(48):485704. PubMed ID: 22071680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes.
    Ogawa Y; Yoshino S; Miyake T; Nishizawa M
    Phys Chem Chem Phys; 2014 Jul; 16(26):13059-62. PubMed ID: 24871387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A carbon nanotube gas sensor fabricated by dielectrophoresis and its application for NH3 detection.
    Wang R; Li H; Pan M; Chen D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6046-9. PubMed ID: 19964889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection.
    Baldrich E; Gómez R; Gabriel G; Muñoz FX
    Biosens Bioelectron; 2011 Jan; 26(5):1876-82. PubMed ID: 20378329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes.
    Ryu J; Kim HS; Hahn HT; Lashmore D
    Biosens Bioelectron; 2010 Mar; 25(7):1603-8. PubMed ID: 20022482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optoelectronic modulation by multi-wall carbon nanotubes.
    Torres-Torres C; Peréa-López N; Martínez-Gutiérrez H; Trejo-Valdez M; Ortíz-López J; Terrones M
    Nanotechnology; 2013 Feb; 24(4):045201. PubMed ID: 23298951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of Surfactant Concentration in Carbon Nanotube Solutions for Dielectrophoretic Ceiling Assembly and Alignment: Implications for Transparent Electronics.
    Abdulhameed A; Halin IA; Mohtar MN; Hamidon MN
    ACS Omega; 2022 Feb; 7(4):3680-3688. PubMed ID: 35128276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfabrication technologies in dielectrophoresis applications--a review.
    Martinez-Duarte R
    Electrophoresis; 2012 Nov; 33(21):3110-32. PubMed ID: 22941778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube composite films with switchable transparency.
    Meng F; Zhang X; Xu G; Yong Z; Chen H; Chen M; Li Q; Zhu Y
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):658-61. PubMed ID: 21351755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.