These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 23165931)
1. Dynamics of a microliquid prism actuated by electrowetting. Lee DG; Park J; Bae J; Kim HY Lab Chip; 2013 Jan; 13(2):274-9. PubMed ID: 23165931 [TBL] [Abstract][Full Text] [Related]
2. An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Schertzer MJ; Gubarenko SI; Ben-Mrad R; Sullivan PE Langmuir; 2010 Dec; 26(24):19230-8. PubMed ID: 21080633 [TBL] [Abstract][Full Text] [Related]
4. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings. Thio SK; Jiang D; Park SY Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880 [TBL] [Abstract][Full Text] [Related]
5. An optofluidic prism tuned by two laminar flows. Xiong S; Liu AQ; Chin LK; Yang Y Lab Chip; 2011 Jun; 11(11):1864-9. PubMed ID: 21448472 [TBL] [Abstract][Full Text] [Related]
6. Nonmechanical three-dimensional beam steering using electrowetting-based liquid lens and liquid prism. Lee J; Lee J; Won YH Opt Express; 2019 Dec; 27(25):36757-36766. PubMed ID: 31873449 [TBL] [Abstract][Full Text] [Related]
7. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
8. Slippery when wet: mobility regimes of confined drops in electrowetting. Baratian D; Ruiz-Gutiérrez É; Mugele F; Ledesma-Aguilar R Soft Matter; 2019 Sep; 15(35):7063-7070. PubMed ID: 31441482 [TBL] [Abstract][Full Text] [Related]
9. Optofluidic laser scanner based on a rotating liquid prism. Kopp D; Lehmann L; Zappe H Appl Opt; 2016 Mar; 55(9):2136-42. PubMed ID: 27140544 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of capillary-driven liquid-liquid displacement in open microchannels. Yang D; Krasowska M; Priest C; Ralston J Phys Chem Chem Phys; 2014 Nov; 16(44):24473-8. PubMed ID: 25308905 [TBL] [Abstract][Full Text] [Related]
11. A refractive tilting-plate technique for measurement of dynamic contact angles. Smedley GT; Coles DE J Colloid Interface Sci; 2005 Jun; 286(1):310-8. PubMed ID: 15848433 [TBL] [Abstract][Full Text] [Related]
12. Characterization of electrowetting processes through force measurements. Crane NB; Mishra P; Volinsky AA Rev Sci Instrum; 2010 Apr; 81(4):043902. PubMed ID: 20441345 [TBL] [Abstract][Full Text] [Related]
13. An arrayed optofluidic system for three-dimensional (3D) focal control via electrowetting. Lee Y; Lee CH; Park SY Opt Express; 2023 May; 31(11):17677-17694. PubMed ID: 37381495 [TBL] [Abstract][Full Text] [Related]
14. Agile wide-angle beam steering with electrowetting microprisms. Smith NR; Abeysinghe DC; Haus JW; Heikenfeld J Opt Express; 2006 Jul; 14(14):6557-63. PubMed ID: 19516833 [TBL] [Abstract][Full Text] [Related]
15. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. Song C; Nguyen NT; Asundi AK; Tan SH Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710 [TBL] [Abstract][Full Text] [Related]
16. Liquid Combination with High Refractive Index Contrast and Fast Scanning Speeds for Electrowetting Adaptive Optics. Lim WY; Supekar OD; Zohrabi M; Gopinath JT; Bright VM Langmuir; 2018 Dec; 34(48):14511-14518. PubMed ID: 30411903 [TBL] [Abstract][Full Text] [Related]
17. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel. Yoon SK; Mitchell M; Choban ER; Kenis PJ Lab Chip; 2005 Nov; 5(11):1259-63. PubMed ID: 16234949 [TBL] [Abstract][Full Text] [Related]
18. Discontinuous liquid rise in capillaries with varying cross-sections. Tsori Y Langmuir; 2006 Oct; 22(21):8860-3. PubMed ID: 17014128 [TBL] [Abstract][Full Text] [Related]