These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23165983)
1. Energy/hole transfer phenomena in hybrid α-sexithiophene (α-STH) nanoparticle-CdTe quantum-dot nanocomposites. Bhattacharyya S; Paramanik B; Kundu S; Patra A Chemphyschem; 2012 Dec; 13(18):4155-62. PubMed ID: 23165983 [TBL] [Abstract][Full Text] [Related]
2. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites. Bain D; Paramanik B; Sadhu S; Patra A Nanoscale; 2015 Dec; 7(48):20697-708. PubMed ID: 26603192 [TBL] [Abstract][Full Text] [Related]
3. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots]. Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132 [TBL] [Abstract][Full Text] [Related]
4. Efficient energy transfer in a new hybrid diphenylfluorene derivative-CdS quantum dot nanocomposite. Yi C; Sun Y; Song B; Tian W; Qi Q; Zheng Y; Dai Y; Jiang W Nanotechnology; 2013 Nov; 24(43):435704. PubMed ID: 24084632 [TBL] [Abstract][Full Text] [Related]
5. Photophysical properties of Au-CdTe hybrid nanostructures of varying sizes and shapes. Haldar KK; Sen T; Mandal S; Patra A Chemphyschem; 2012 Dec; 13(17):3989-96. PubMed ID: 23060245 [TBL] [Abstract][Full Text] [Related]
7. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. Bang JH; Kamat PV ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent network formation of quantum dots and fluorescent quenching by Au nanoparticle embedding. Sekiguchi S; Niikura K; Iyo N; Matsuo Y; Eguchi A; Nakabayashi T; Ohta N; Ijiro K ACS Appl Mater Interfaces; 2011 Nov; 3(11):4169-73. PubMed ID: 21970588 [TBL] [Abstract][Full Text] [Related]
9. Quenching of semiconductor quantum dot photoluminescence by a pi-conjugated polymer. Selmarten D; Jones M; Rumbles G; Yu P; Nedeljkovic J; Shaheen S J Phys Chem B; 2005 Aug; 109(33):15927-32. PubMed ID: 16853021 [TBL] [Abstract][Full Text] [Related]
10. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime. Maity P; Debnath T; Chopra U; Ghosh HN Nanoscale; 2015 Feb; 7(6):2698-707. PubMed ID: 25583154 [TBL] [Abstract][Full Text] [Related]
11. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. Zhu H; Song N; Lian T J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569 [TBL] [Abstract][Full Text] [Related]
12. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay. Priyam A; Chatterjee A; Bhattacharya SC; Saha A Photochem Photobiol Sci; 2009 Mar; 8(3):362-70. PubMed ID: 19255677 [TBL] [Abstract][Full Text] [Related]
13. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Gopal A; Hoshino K; Kim S; Zhang X Nanotechnology; 2009 Jun; 20(23):235201. PubMed ID: 19448295 [TBL] [Abstract][Full Text] [Related]
14. Concentration and excitation effects on the exciton dynamics of poly(3-hexylthiophene)/PbS quantum dot blend films. Tsokkou D; Itskos G; Choulis S; Yarema M; Heiss W; Othonos A Nanotechnology; 2013 Jun; 24(23):235707. PubMed ID: 23676204 [TBL] [Abstract][Full Text] [Related]
15. Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin. Keane PM; Gallagher SA; Magno LM; Leising MJ; Clark IP; Greetham GM; Towrie M; Gun'ko YK; Kelly JM; Quinn SJ Dalton Trans; 2012 Nov; 41(42):13159-66. PubMed ID: 23007292 [TBL] [Abstract][Full Text] [Related]
16. Resonance energy transfer in self-organized organic/inorganic dendrite structures. Melnikau D; Savateeva D; Lesnyak V; Gaponik N; Fernández YN; Vasilevskiy MI; Costa MF; Mochalov KE; Oleinikov V; Rakovich YP Nanoscale; 2013 Oct; 5(19):9317-23. PubMed ID: 23949098 [TBL] [Abstract][Full Text] [Related]
17. Mechanism for strong binding of CdSe quantum dots to multiwall carbon nanotubes for solar energy harvesting. Azoz S; Jiang J; Keskar G; McEnally C; Alkas A; Ren F; Marinkovic N; Haller GL; Ismail-Beigi S; Pfefferle LD Nanoscale; 2013 Aug; 5(15):6893-900. PubMed ID: 23783269 [TBL] [Abstract][Full Text] [Related]
18. Föster resonance energy transfer in solution-processed Si-nanoparticle/carbon nanotube nanocomposites. Pan XW; Liu N; Zheng DX; Shi MM; Wu G; Wang M; Chen HZ Nanotechnology; 2009 Oct; 20(41):415605. PubMed ID: 19762949 [TBL] [Abstract][Full Text] [Related]
19. Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. Colbert AE; Janke EM; Hsieh ST; Subramaniyan S; Schlenker CW; Jenekhe SA; Ginger DS J Phys Chem Lett; 2013 Jan; 4(2):280-4. PubMed ID: 26283435 [TBL] [Abstract][Full Text] [Related]
20. Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. Higgins LJ; Karanikolas VD; Marocico CA; Bell AP; Sadler TC; Parbrook PJ; Bradley AL Opt Express; 2015 Jan; 23(2):1377-87. PubMed ID: 25835896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]