BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23166008)

  • 41. Graphene decoration with metal nanoparticles: towards easy integration for sensing applications.
    Gutés A; Hsia B; Sussman A; Mickelson W; Zettl A; Carraro C; Maboudian R
    Nanoscale; 2012 Jan; 4(2):438-40. PubMed ID: 22147241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts.
    Kim JY; Kim SH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):593-7. PubMed ID: 23646780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper Nanoparticles in Click Chemistry.
    Alonso F; Moglie Y; Radivoy G
    Acc Chem Res; 2015 Sep; 48(9):2516-28. PubMed ID: 26332570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of glycoconjugate mimics by 'click chemistry'.
    Thakur K; Khare NK
    Carbohydr Res; 2019 Oct; 484():107775. PubMed ID: 31430604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of an amylose-graft-poly(n-butyl methacrylate) copolymer obtained by click chemistry by EPR and SS-NMR spectroscopies.
    Borsacchi S; Calucci L; Geppi M; La Terra F; Pinzino C; Bertoldo M
    Carbohydr Polym; 2014 Nov; 112():245-54. PubMed ID: 25129741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New triazole derivatives as antifungal agents: synthesis via click reaction, in vitro evaluation and molecular docking studies.
    Zou Y; Zhao Q; Liao J; Hu H; Yu S; Chai X; Xu M; Wu Q
    Bioorg Med Chem Lett; 2012 Apr; 22(8):2959-62. PubMed ID: 22437114
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The oxidation of metal-capped Co cluster films under ambient conditions.
    De Toro JA; Andrés JP; González JA; Muñiz P; Riveiro JM
    Nanotechnology; 2009 Feb; 20(8):085710. PubMed ID: 19417471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and evaluation of triazole-linked poly(ε-caprolactone)-graft-poly(2-methyl-2-oxazoline) copolymers as potential drug carriers.
    Guillerm B; Darcos V; Lapinte V; Monge S; Coudane J; Robin JJ
    Chem Commun (Camb); 2012 Mar; 48(23):2879-81. PubMed ID: 22311101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Supported Cu(II) polymer catalysts for aqueous phenol oxidation.
    Castro IU; Stüber F; Fabregat A; Font J; Fortuny A; Bengoa C
    J Hazard Mater; 2009 Apr; 163(2-3):809-15. PubMed ID: 18722052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-pot synthesis of triangular Ag nanoplates with tunable edge length.
    Zhang Y; Yang P; Zhang L
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8494-501. PubMed ID: 23421236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward the synthesis of wafer-scale single-crystal graphene on copper foils.
    Yan Z; Lin J; Peng Z; Sun Z; Zhu Y; Li L; Xiang C; Samuel EL; Kittrell C; Tour JM
    ACS Nano; 2012 Oct; 6(10):9110-7. PubMed ID: 22966902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential controlled electrochemical conversion of AgCN and Cu(OH)2 nanofibers into metal nanoparticles, nanoprisms, nanofibers, and porous networks.
    Bourret GR; Lennox RB
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3745-58. PubMed ID: 21121642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Orthogonally bifunctionalised polyacrylamide nanoparticles: a support for the assembly of multifunctional nanodevices.
    Giuntini F; Dumoulin F; Daly R; Ahsen V; Scanlan EM; Lavado AS; Aylott JW; Rosser GA; Beeby A; Boyle RW
    Nanoscale; 2012 Mar; 4(6):2034-45. PubMed ID: 22354385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increased surface spin stability in γ-Fe2O3 nanoparticles with a Cu shell.
    Desautels RD; Skoropata E; Chen YY; Ouyang H; Freeland JW; van Lierop J
    J Phys Condens Matter; 2012 Apr; 24(14):146001. PubMed ID: 22410936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-component synthesis of neoglycopeptides using a Cu(II)-triggered aminolysis of peptide hydrazide resin and an azide-alkyne cycloaddition sequence.
    Ebran JP; Dendane N; Melnyk O
    Org Lett; 2011 Aug; 13(16):4336-9. PubMed ID: 21766830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assembly of CuIn(1-x)Ga(x)S2 nanorods into highly ordered 2D and 3D superstructures.
    Singh A; Coughlan C; Laffir F; Ryan KM
    ACS Nano; 2012 Aug; 6(8):6977-83. PubMed ID: 22765274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation.
    Wang H; Feng J; Hu X; Ming Ng K
    Nanotechnology; 2009 Mar; 20(9):095601. PubMed ID: 19417492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.