BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 23166392)

  • 21. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells.
    Seisenberger S; Peat JR; Reik W
    Curr Opin Cell Biol; 2013 Jun; 25(3):281-8. PubMed ID: 23510682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic regulation of DNA methylation during mammalian development.
    Guibert S; Forné T; Weber M
    Epigenomics; 2009 Oct; 1(1):81-98. PubMed ID: 22122638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic imprinting: a mammalian epigenetic discovery model.
    Barlow DP
    Annu Rev Genet; 2011; 45():379-403. PubMed ID: 21942369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Epigenetics, genomic imprinting and developmental disorders].
    Le Bouc Y; Rossignol S; Azzi S; Brioude F; Cabrol S; Gicquel C; Netchine I
    Bull Acad Natl Med; 2010 Feb; 194(2):287-97; discussion 297-300. PubMed ID: 21166119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Tet1 in erasure of genomic imprinting.
    Yamaguchi S; Shen L; Liu Y; Sendler D; Zhang Y
    Nature; 2013 Dec; 504(7480):460-4. PubMed ID: 24291790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global profiling of DNA methylation erasure in mouse primordial germ cells.
    Guibert S; Forné T; Weber M
    Genome Res; 2012 Apr; 22(4):633-41. PubMed ID: 22357612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The origin and evolution of genomic imprinting and viviparity in mammals.
    Renfree MB; Suzuki S; Kaneko-Ishino T
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1609):20120151. PubMed ID: 23166401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.
    Davis TL; Yang GJ; McCarrey JR; Bartolomei MS
    Hum Mol Genet; 2000 Nov; 9(19):2885-94. PubMed ID: 11092765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency.
    Rulands S; Lee HJ; Clark SJ; Angermueller C; Smallwood SA; Krueger F; Mohammed H; Dean W; Nichols J; Rugg-Gunn P; Kelsey G; Stegle O; Simons BD; Reik W
    Cell Syst; 2018 Jul; 7(1):63-76.e12. PubMed ID: 30031774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of genomic imprinting in mammals.
    Gold JD; Pedersen RA
    Curr Top Dev Biol; 1994; 29():227-80. PubMed ID: 7828439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functions of DNA methylation and hydroxymethylation in mammalian development.
    Guibert S; Weber M
    Curr Top Dev Biol; 2013; 104():47-83. PubMed ID: 23587238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
    Cortázar D; Kunz C; Selfridge J; Lettieri T; Saito Y; MacDougall E; Wirz A; Schuermann D; Jacobs AL; Siegrist F; Steinacher R; Jiricny J; Bird A; Schär P
    Nature; 2011 Feb; 470(7334):419-23. PubMed ID: 21278727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells.
    Miyoshi N; Stel JM; Shioda K; Qu N; Odajima J; Mitsunaga S; Zhang X; Nagano M; Hochedlinger K; Isselbacher KJ; Shioda T
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9545-50. PubMed ID: 27486249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin modification and epigenetic reprogramming in mammalian development.
    Li E
    Nat Rev Genet; 2002 Sep; 3(9):662-73. PubMed ID: 12209141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of methylation at H19 DMD is associated with biallelic expression and reduced development in cattle derived by somatic cell nuclear transfer.
    Suzuki J; Therrien J; Filion F; Lefebvre R; Goff AK; Perecin F; Meirelles FV; Smith LC
    Biol Reprod; 2011 May; 84(5):947-56. PubMed ID: 21248292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targets and dynamics of promoter DNA methylation during early mouse development.
    Borgel J; Guibert S; Li Y; Chiba H; Schübeler D; Sasaki H; Forné T; Weber M
    Nat Genet; 2010 Dec; 42(12):1093-100. PubMed ID: 21057502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos.
    Min B; Park JS; Jeong YS; Jeon K; Kang YK
    Nucleic Acids Res; 2020 Sep; 48(15):8431-8444. PubMed ID: 32667642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo.
    Yang H; Bai D; Li Y; Yu Z; Wang C; Sheng Y; Liu W; Gao S; Zhang Y
    Nat Cell Biol; 2022 May; 24(5):783-792. PubMed ID: 35484247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA methylation and mammalian epigenetics.
    Reik W; Dean W
    Electrophoresis; 2001 Aug; 22(14):2838-43. PubMed ID: 11565778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths.
    Kierszenbaum AL
    Mol Reprod Dev; 2002 Nov; 63(3):269-72. PubMed ID: 12237941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.