These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23166495)

  • 1. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream.
    Heddergott N; Krüger T; Babu SB; Wei A; Stellamanns E; Uppaluri S; Pfohl T; Stark H; Engstler M
    PLoS Pathog; 2012; 8(11):e1003023. PubMed ID: 23166495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host.
    Bargul JL; Jung J; McOdimba FA; Omogo CO; Adung'a VO; Krüger T; Masiga DK; Engstler M
    PLoS Pathog; 2016 Feb; 12(2):e1005448. PubMed ID: 26871910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of chiral cell shape to ensure highly directional swimming in trypanosomes.
    Wheeler RJ
    PLoS Comput Biol; 2017 Jan; 13(1):e1005353. PubMed ID: 28141804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the complex cell design of Trypanosoma brucei and its motility.
    Alizadehrad D; Krüger T; Engstler M; Stark H
    PLoS Comput Biol; 2015 Jan; 11(1):e1003967. PubMed ID: 25569823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering.
    Krüger T; Engstler M
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms.
    Dóró É; Jacobs SH; Hammond FR; Schipper H; Pieters RP; Carrington M; Wiegertjes GF; Forlenza M
    Elife; 2019 Sep; 8():. PubMed ID: 31547905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellar motility of Trypanosoma cruzi epimastigotes.
    Ballesteros-Rodea G; Santillán M; Martínez-Calvillo S; Manning-Cela R
    J Biomed Biotechnol; 2012; 2012():520380. PubMed ID: 22287834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanin, a component of the flagellar Dynein regulatory complex, is essential in bloodstream form African trypanosomes.
    Ralston KS; Hill KL
    PLoS Pathog; 2006 Sep; 2(9):e101. PubMed ID: 17009870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite.
    Barry JD; McCulloch R
    Adv Parasitol; 2001; 49():1-70. PubMed ID: 11461029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. African trypanosomes: the genome and adaptations for immune evasion.
    Rudenko G
    Essays Biochem; 2011; 51():47-62. PubMed ID: 22023441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.
    Constantino MA; Jabbarzadeh M; Fu HC; Bansil R
    Sci Adv; 2016 Nov; 2(11):e1601661. PubMed ID: 28138539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Langevin dynamics deciphers the motility pattern of swimming parasites.
    Zaburdaev V; Uppaluri S; Pfohl T; Engstler M; Friedrich R; Stark H
    Phys Rev Lett; 2011 May; 106(20):208103. PubMed ID: 21668266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans.
    Kollien AH; Schmidt J; Schaub GA
    Acta Trop; 1998 Jun; 70(2):127-41. PubMed ID: 9698259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites.
    Mukhopadhyay AG; Dey CS
    Mol Biochem Parasitol; 2018 Oct; 225():27-37. PubMed ID: 30145318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus.
    Peacock L; Kay C; Bailey M; Gibson W
    PLoS Pathog; 2018 May; 14(5):e1007043. PubMed ID: 29772025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.
    Espinosa-Álvarez O; Ortiz PA; Lima L; Costa-Martins AG; Serrano MG; Herder S; Buck GA; Camargo EP; Hamilton PB; Stevens JR; Teixeira MMG
    Int J Parasitol; 2018 Jun; 48(7):569-584. PubMed ID: 29544703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parasites in motion: flagellum-driven cell motility in African trypanosomes.
    Hill KL
    Curr Opin Microbiol; 2010 Aug; 13(4):459-65. PubMed ID: 20591724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restless gossamers: antibody clearance by hydrodynamic flow forces generated at the surface of motile trypanosome parasites.
    Dean SD; Matthews KR
    Cell Host Microbe; 2007 Nov; 2(5):279-81. PubMed ID: 18005745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei.
    Hovel-Miner G; Mugnier M; Papavasiliou FN; Pinger J; Schulz D
    Results Probl Cell Differ; 2015; 57():23-46. PubMed ID: 26537376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.