BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23166581)

  • 1. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells.
    Woodard LE; Li X; Malani N; Kaja A; Hice RH; Atkinson PW; Bushman FD; Craig NL; Wilson MH
    PLoS One; 2012; 7(11):e42666. PubMed ID: 23166581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture.
    Li X; Ewis H; Hice RH; Malani N; Parker N; Zhou L; Feschotte C; Bushman FD; Atkinson PW; Craig NL
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):E478-87. PubMed ID: 23091042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of the catalytic triad of the hAT-family transposase TcBuster.
    Woodard LE; Williams FM; Jarrett IC; Wilson MH
    Plasmid; 2021 Mar; 114():102554. PubMed ID: 33476638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.
    Meir YJ; Weirauch MT; Yang HS; Chung PC; Yu RK; Wu SC
    BMC Biotechnol; 2011 Mar; 11():28. PubMed ID: 21447194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic and functional characterization of the hAT transposon superfamily.
    Arensburger P; Hice RH; Zhou L; Smith RC; Tom AC; Wright JA; Knapp J; O'Brochta DA; Craig NL; Atkinson PW
    Genetics; 2011 May; 188(1):45-57. PubMed ID: 21368277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events.
    Pavlopoulos A; Berghammer AJ; Averof M; Klingler M
    Genetics; 2004 Jun; 167(2):737-46. PubMed ID: 15238525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. piggyBac transposase tools for genome engineering.
    Li X; Burnight ER; Cooney AL; Malani N; Brady T; Sander JD; Staber J; Wheelan SJ; Joung JK; McCray PB; Bushman FD; Sinn PL; Craig NL
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):E2279-87. PubMed ID: 23723351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat.
    Furushima K; Jang CW; Chen DW; Xiao N; Overbeek PA; Behringer RR
    Genetics; 2012 Dec; 192(4):1235-48. PubMed ID: 23023007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hyperactive piggyBac transposase for mammalian applications.
    Yusa K; Zhou L; Li MA; Bradley A; Craig NL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1531-6. PubMed ID: 21205896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids.
    Lorenzen MD; Kimzey T; Shippy TD; Brown SJ; Denell RE; Beeman RW
    Insect Mol Biol; 2007 Jun; 16(3):265-75. PubMed ID: 17316329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool.
    Kim A; Pyykko I
    Mol Cell Biochem; 2011 Aug; 354(1-2):301-9. PubMed ID: 21516337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The goldfish hAT-family transposon Tgf2 is capable of autonomous excision in zebrafish embryos.
    Cheng LD; Jiang XY; Tian YM; Chen J; Zou SM
    Gene; 2014 Feb; 536(1):74-8. PubMed ID: 24321692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal self-regulation of transposition through host-independent transposase rodlet formation.
    Woodard LE; Downes LM; Lee YC; Kaja A; Terefe ES; Wilson MH
    Nucleic Acids Res; 2017 Jan; 45(1):353-366. PubMed ID: 27899587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells.
    Converse AD; Belur LR; Gori JL; Liu G; Amaya F; Aguilar-Cordova E; Hackett PB; McIvor RS
    Biosci Rep; 2004 Dec; 24(6):577-94. PubMed ID: 16158196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps.
    Trauner J; Schinko J; Lorenzen MD; Shippy TD; Wimmer EA; Beeman RW; Klingler M; Bucher G; Brown SJ
    BMC Biol; 2009 Nov; 7():73. PubMed ID: 19891766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. piggyBac can bypass DNA synthesis during cut and paste transposition.
    Mitra R; Fain-Thornton J; Craig NL
    EMBO J; 2008 Apr; 27(7):1097-109. PubMed ID: 18354502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. piggyBac-mediated germline transformation in the beetle Tribolium castaneum.
    Lorenzen MD; Berghammer AJ; Brown SJ; Denell RE; Klingler M; Beeman RW
    Insect Mol Biol; 2003 Oct; 12(5):433-40. PubMed ID: 12974948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis.
    Kawakami K; Imanaka K; Itoh M; Taira M
    Gene; 2004 Aug; 338(1):93-8. PubMed ID: 15302410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
    Wu C; Wang S
    J Biosci Bioeng; 2014 Oct; 118(4):359-66. PubMed ID: 24751435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. piggyBac transposon system modification of primary human T cells.
    Saha S; Nakazawa Y; Huye LE; Doherty JE; Galvan DL; Rooney CM; Wilson MH
    J Vis Exp; 2012 Nov; (69):e4235. PubMed ID: 23149543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.