BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 23166625)

  • 41. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.
    Hashiguchi Y; Nishida M
    Mol Biol Evol; 2007 Sep; 24(9):2099-107. PubMed ID: 17634392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes.
    Ocampo Daza D; Haitina T
    Genome Biol Evol; 2020 Jul; 12(7):993-1012. PubMed ID: 32652010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural selection and functional diversification of the epidermal growth factor receptor EGFR family in vertebrates.
    Liu Y; He W; Long J; Pang F; Xian L; Chen M; Wu Y; Hu Y
    Genomics; 2013 Jun; 101(6):318-25. PubMed ID: 23499669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The evolution of protostome GATA factors: molecular phylogenetics, synteny, and intron/exon structure reveal orthologous relationships.
    Gillis WQ; Bowerman BA; Schneider SQ
    BMC Evol Biol; 2008 Apr; 8():112. PubMed ID: 18412965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The dispanins: a novel gene family of ancient origin that contains 14 human members.
    Sällman Almén M; Bringeland N; Fredriksson R; Schiöth HB
    PLoS One; 2012; 7(2):e31961. PubMed ID: 22363774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vertebrate beta-thymosins: conserved synteny reveals the relationship between those of bony fish and of land vertebrates.
    Edwards J
    FEBS Lett; 2010 Mar; 584(5):1047-53. PubMed ID: 20138884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster.
    Yu WP; Rajasegaran V; Yew K; Loh WL; Tay BH; Amemiya CT; Brenner S; Venkatesh B
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3819-24. PubMed ID: 18319338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.
    Singh PP; Arora J; Isambert H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004394. PubMed ID: 26181593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The evolution of the calpain family as reflected in paralogous chromosome regions.
    Jékely G; Friedrich P
    J Mol Evol; 1999 Aug; 49(2):272-81. PubMed ID: 10441678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene duplications and evolution of vertebrate voltage-gated sodium channels.
    Novak AE; Jost MC; Lu Y; Taylor AD; Zakon HH; Ribera AB
    J Mol Evol; 2006 Aug; 63(2):208-21. PubMed ID: 16830092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution, functional divergence and conserved exon-intron structure of bHLH/PAS gene family.
    Yan J; Ma Z; Xu X; Guo AY
    Mol Genet Genomics; 2014 Feb; 289(1):25-36. PubMed ID: 24202550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New paralogues and revised time line in the expansion of the vertebrate GH18 family.
    Hussain M; Wilson JB
    J Mol Evol; 2013 Apr; 76(4):240-60. PubMed ID: 23558346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family.
    Kuo MW; Postlethwait J; Lee WC; Lou SW; Chan WK; Chung BC
    Biochem J; 2005 Jul; 389(Pt 1):19-26. PubMed ID: 15725073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular evolution of the hemoglobin gene family across vertebrates.
    Mao Y; Peng T; Shao F; Zhao Q; Peng Z
    Genetica; 2023 Jun; 151(3):201-213. PubMed ID: 37069365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Comparative analysis of gene family size provides insight into the adaptive evolution of vertebrates].
    Meng Y; Yang RL
    Yi Chuan; 2019 Feb; 41(2):158-174. PubMed ID: 30803946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.
    Al-Salam A; Irwin DM
    BMC Evol Biol; 2017 Jun; 17(1):148. PubMed ID: 28645244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution.
    Ebner B; Panopoulou G; Vinogradov SN; Kiger L; Marden MC; Burmester T; Hankeln T
    BMC Evol Biol; 2010 Nov; 10():370. PubMed ID: 21118516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach.
    Castillo AI; Andreína Pacheco M; Escalante AA
    Infect Genet Evol; 2017 Jun; 50():7-19. PubMed ID: 28163236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish.
    Boudinot P; van der Aa LM; Jouneau L; Du Pasquier L; Pontarotti P; Briolat V; Benmansour A; Levraud JP
    PLoS One; 2011; 6(7):e22022. PubMed ID: 21789205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A revised evolutionary history of the CYP1A subfamily: gene duplication, gene conversion, and positive selection.
    Goldstone HM; Stegeman JJ
    J Mol Evol; 2006 Jun; 62(6):708-17. PubMed ID: 16752211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.