These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23166658)

  • 1. An accessible method for implementing hierarchical models with spatio-temporal abundance data.
    Ross BE; Hooten MB; Koons DN
    PLoS One; 2012; 7(11):e49395. PubMed ID: 23166658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.
    Carroll R; Lawson AB; Faes C; Kirby RS; Aregay M; Watjou K
    Spat Spatiotemporal Epidemiol; 2015; 14-15():45-54. PubMed ID: 26530822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique.
    Moraga P; Dean C; Inoue J; Morawiecki P; Noureen SR; Wang F
    Spat Spatiotemporal Epidemiol; 2021 Nov; 39():100440. PubMed ID: 34774255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods.
    Lele SR; Dennis B; Lutscher F
    Ecol Lett; 2007 Jul; 10(7):551-63. PubMed ID: 17542934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros.
    Arab A
    Int J Environ Res Public Health; 2015 Aug; 12(9):10536-48. PubMed ID: 26343696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the demographic drivers of realized population growth rates.
    Koons DN; Arnold TW; Schaub M
    Ecol Appl; 2017 Oct; 27(7):2102-2115. PubMed ID: 28675581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package.
    Lee D
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100353. PubMed ID: 32807395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models and integrated nested Laplace approximations.
    Holand AM; Steinsland I; Martino S; Jensen H
    G3 (Bethesda); 2013 Aug; 3(8):1241-51. PubMed ID: 23708299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.
    Ugarte MD; Adin A; Goicoa T; Militino AF
    Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():39-55. PubMed ID: 24377114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hierarchical modeling framework for multiple observer transect surveys.
    Conn PB; Laake JL; Johnson DS
    PLoS One; 2012; 7(8):e42294. PubMed ID: 22905121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A design-by-treatment interaction model for network meta-analysis and meta-regression with integrated nested Laplace approximations.
    Günhan BK; Friede T; Held L
    Res Synth Methods; 2018 Jun; 9(2):179-194. PubMed ID: 29193801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-time interactions in Bayesian disease mapping with recent tools: Making things easier for practitioners.
    Urdangarin A; Goicoa T; Dolores Ugarte M
    Stat Methods Med Res; 2022 Jun; 31(6):1085-1103. PubMed ID: 35179396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing convergence of Markov chain Monte Carlo simulations in hierarchical Bayesian models for population pharmacokinetics.
    Dodds MG; Vicini P
    Ann Biomed Eng; 2004 Sep; 32(9):1300-13. PubMed ID: 15493516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models.
    Golicher DJ; O'Hara RB; Ruíz-Montoya L; Cayuela L
    Ecol Appl; 2006 Feb; 16(1):202-12. PubMed ID: 16705973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian explanatory additive IRT models.
    Mair P; Gruber K
    Br J Math Stat Psychol; 2022 Feb; 75(1):59-87. PubMed ID: 34089620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations.
    Paul M; Riebler A; Bachmann LM; Rue H; Held L
    Stat Med; 2010 May; 29(12):1325-39. PubMed ID: 20101670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Gibbs-INLA algorithm for multidimensional graded response model analysis.
    Lin X; Zhang S; Tang Y; Li X
    Br J Math Stat Psychol; 2024 Feb; 77(1):169-195. PubMed ID: 37772696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transformation class for spatio-temporal survival data with a cure fraction.
    Hurtado Rúa SM; Dey DK
    Stat Methods Med Res; 2016 Feb; 25(1):167-87. PubMed ID: 22514030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.