These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 23166803)
1. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m. Faulhaber M; Dünnwald T; Gatterer H; Bernardi L; Burtscher M PLoS One; 2012; 7(11):e49953. PubMed ID: 23166803 [TBL] [Abstract][Full Text] [Related]
2. Intermittent hypoxia does not increase exercise ventilation at simulated moderate altitude. Katayama K; Sato K; Hotta N; Ishida K; Iwasaki K; Miyamura M Int J Sports Med; 2007 Jun; 28(6):480-7. PubMed ID: 17357965 [TBL] [Abstract][Full Text] [Related]
3. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. Lizamore CA; Hamlin MJ High Alt Med Biol; 2017 Dec; 18(4):305-321. PubMed ID: 28846046 [TBL] [Abstract][Full Text] [Related]
4. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response. Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947 [TBL] [Abstract][Full Text] [Related]
5. Substrate utilization during exercise and recovery at moderate altitude. Katayama K; Goto K; Ishida K; Ogita F Metabolism; 2010 Jul; 59(7):959-66. PubMed ID: 20036404 [TBL] [Abstract][Full Text] [Related]
6. Military applications of hypoxic training for high-altitude operations. Muza SR Med Sci Sports Exerc; 2007 Sep; 39(9):1625-31. PubMed ID: 17805096 [TBL] [Abstract][Full Text] [Related]
7. Enhanced chemosensitivity after intermittent hypoxic exposure does not affect exercise ventilation at sea level. Katayama K; Sato Y; Shima N; Qiu JC; Ishida K; Mori S; Miyamura M Eur J Appl Physiol; 2002 Jun; 87(2):187-91. PubMed ID: 12070631 [TBL] [Abstract][Full Text] [Related]
8. The effect of dynamic intermittent hypoxic conditioning on arterial oxygen saturation. Hetzler RK; Stickley CD; Kimura IF; LaBotz M; Nichols AW; Nakasone KT; Sargent RW; Burgess LP Wilderness Environ Med; 2009; 20(1):26-32. PubMed ID: 19364183 [TBL] [Abstract][Full Text] [Related]
9. Intermittent hypoxic exposure does not improve sleep at 4300 m. Jones JE; Muza SR; Fulco CS; Beidleman BA; Tapia ML; Cymerman A High Alt Med Biol; 2008; 9(4):281-7. PubMed ID: 19115911 [TBL] [Abstract][Full Text] [Related]
10. Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Casas M; Casas H; Pagés T; Rama R; Ricart A; Ventura JL; Ibáñez J; Rodríguez FA; Viscor G Aviat Space Environ Med; 2000 Feb; 71(2):125-30. PubMed ID: 10685585 [TBL] [Abstract][Full Text] [Related]
11. Changes in hypoxic and hypercapnic ventilatory responses at high altitude measured using rebreathing methods. Frost S; Pham K; Puvvula N; Oeung B; Heinrich EC J Appl Physiol (1985); 2024 Aug; 137(2):364-373. PubMed ID: 38779762 [TBL] [Abstract][Full Text] [Related]
12. Hypoxic ventilatory response is correlated with increased submaximal exercise ventilation after live high, train low. Townsend NE; Gore CJ; Hahn AG; Aughey RJ; Clark SA; Kinsman TA; McKenna MJ; Hawley JA; Chow CM Eur J Appl Physiol; 2005 May; 94(1-2):207-15. PubMed ID: 15609029 [TBL] [Abstract][Full Text] [Related]
14. Intermittent hypoxia increases ventilation and Sa(O2) during hypoxic exercise and hypoxic chemosensitivity. Katayama K; Sato Y; Morotome Y; Shima N; Ishida K; Mori S; Miyamura M J Appl Physiol (1985); 2001 Apr; 90(4):1431-40. PubMed ID: 11247944 [TBL] [Abstract][Full Text] [Related]
15. Evidence from high-altitude acclimatization for an integrated cerebrovascular and ventilatory hypercapnic response but different responses to hypoxia. Smith ZM; Krizay E; Sá RC; Li ET; Scadeng M; Powell FL; Dubowitz DJ J Appl Physiol (1985); 2017 Dec; 123(6):1477-1486. PubMed ID: 28705997 [TBL] [Abstract][Full Text] [Related]
16. Hypoxic ventilatory responses in Tibetan residents of 4400 m compared with 3658 m. Curran LS; Zhuang J; Droma T; Land L; Moore LG Respir Physiol; 1995 Jun; 100(3):223-30. PubMed ID: 7481111 [TBL] [Abstract][Full Text] [Related]
17. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m. Wolfel EE; Selland MA; Cymerman A; Brooks GA; Butterfield GE; Mazzeo RS; Grover RF; Reeves JT J Appl Physiol (1985); 1998 Sep; 85(3):1092-102. PubMed ID: 9729588 [TBL] [Abstract][Full Text] [Related]
18. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. Calbet JA; Rådegran G; Boushel R; Saltin B J Physiol; 2009 Jan; 587(2):477-90. PubMed ID: 19047206 [TBL] [Abstract][Full Text] [Related]
19. Ventilatory and cardiac responses to hypoxia at submaximal exercise are independent of altitude and exercise intensity. Lhuissier FJ; Brumm M; Ramier D; Richalet JP J Appl Physiol (1985); 2012 Feb; 112(4):566-70. PubMed ID: 22194322 [TBL] [Abstract][Full Text] [Related]
20. Effects of acute simulated altitude on the maximal lactate steady state in humans. Beever AT; Zhuang AY; Murias JM; Aboodarda SJ; MacInnis MJ Am J Physiol Regul Integr Comp Physiol; 2024 Aug; 327(2):R195-R207. PubMed ID: 38842515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]