These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2316715)

  • 21. Anomalous rectification in neurons from cat sensorimotor cortex in vitro.
    Spain WJ; Schwindt PC; Crill WE
    J Neurophysiol; 1987 May; 57(5):1555-76. PubMed ID: 3585479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; Gamiño SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrogenic component of resting potential in rabbit ventricular muscle?
    Ruiz-Ceretti E; Nguyen TA; Schanne OF; Caille JP
    Am J Physiol; 1981 Jan; 240(1):C28-34. PubMed ID: 6257115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-channel blockade in canine hemorrhagic shock.
    Horton JW
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R1012-9. PubMed ID: 2589527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amiloride-sensitive Na+ pathways in capillary endothelial cell swelling during hemorrhagic shock.
    Mazzoni MC; Intaglietta M; Cragoe EJ; Arfors KE
    J Appl Physiol (1985); 1992 Oct; 73(4):1467-73. PubMed ID: 1332933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM; Fitts RH
    J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of isosmotic removal of extracellular Na+ on cell volume and membrane potential in muscle cells.
    Peña-Rasgado C; Summers JC; McGruder KD; DeSantiago J; Rasgado-Flores H
    Am J Physiol; 1994 Sep; 267(3 Pt 1):C759-67. PubMed ID: 7943205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red cell sodium and potassium in hemorrhagic shock measured by lithium substitution analysis.
    Day B; Friedman SM
    J Trauma; 1980 Jan; 20(1):52-4. PubMed ID: 7351678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of septic shock on skeletal muscle action potentials in the primate.
    Trunkey DD; Illner H; Wagner IY; Shires GT
    Surgery; 1979 Jun; 85(6):638-43. PubMed ID: 109938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of potassium uptake in neuropile glial cells in the central nervous system of the leech.
    Wuttke WA
    J Neurophysiol; 1990 May; 63(5):1089-97. PubMed ID: 2358863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular K+ and Na+ activities under hypoxia, acidosis, and no glucose in dog hearts.
    Nakaya H; Kimura S; Kanno M
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1078-85. PubMed ID: 3000193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport.
    O'Connor ER; Sontheimer H; Ransom BR
    J Neurophysiol; 1994 Dec; 72(6):2580-9. PubMed ID: 7897475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relation of cell volume, cell sodium and the transmembrane sodium gradient to blood pressure.
    Friedman SM
    J Hypertens; 1990 Jan; 8(1):67-73. PubMed ID: 2157759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular sodium and potassium changes in vascular smooth muslce during hemorrhagic shock.
    Day B; Friedman SM
    Surg Gynecol Obstet; 1978 Jul; 147(1):25-6. PubMed ID: 663804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of alpha-adrenergic blockade on renal function in hemorrhagic shock.
    Feigen LP; Coleman B; Glaviano VV
    Am J Physiol; 1977 May; 232(5):F409-15. PubMed ID: 871163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of BKCa alpha subunit tyrosine phosphorylation in vascular hyporesponsiveness of superior mesenteric artery following hemorrhagic shock in rats.
    Zhou R; Liu L; Hu D
    Cardiovasc Res; 2005 Nov; 68(2):327-35. PubMed ID: 16043163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting and action potentials under hypotonic conditions, unlike Na+ pump activity, depend only on the alteration of intracellular [Na+] and [K+] in frog skeletal muscle.
    Venosa RA
    J Exp Biol; 2011 Mar; 214(Pt 5):858-61. PubMed ID: 21307073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporeactivity during severe shock.
    Zhao K; Liu J; Jin C
    Chin Med J (Engl); 2000 Jan; 113(1):59-64. PubMed ID: 11775213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EFFECTS OF NOREPINEPHRINE ON MYOCARDIAL K, NA, C1 AND H2O IN HEMORRHAGIC SHOCK.
    GLAVIANO VV; COLEMAN B
    Proc Soc Exp Biol Med; 1964 May; 116():136-40. PubMed ID: 14200086
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.