These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2316717)

  • 41. [Biomechanical studies of the ligaments of the knee joint (anterior cruciate ligament and medial collateral ligament) using amputated limbs].
    Arai Y
    Nihon Seikeigeka Gakkai Zasshi; 1986 Jul; 60(7):727-43. PubMed ID: 3772212
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation.
    Harner CD; Xerogeanes JW; Livesay GA; Carlin GJ; Smith BA; Kusayama T; Kashiwaguchi S; Woo SL
    Am J Sports Med; 1995; 23(6):736-45. PubMed ID: 8600743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The symmetry of the medial collateral and anterior cruciate ligament properties: a biochemical study in the rat hind limb.
    Yiannakopoulos CK; Kanellopoulos AD; Dontas IA; Trovas G; Korres DS; Lyritis GP
    J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):170-3. PubMed ID: 15951634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New experimental procedures to evaluate the biomechanical properties of healing canine medial collateral ligaments.
    Woo SL; Gomez MA; Inoue M; Akeson WH
    J Orthop Res; 1987; 5(3):425-32. PubMed ID: 3625365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of tibial-femoral angle on the failure mechanics of the canine anterior cruciate ligament.
    Figgie HE; Bahniuk EH; Heiple KG; Davy DT
    J Biomech; 1986; 19(2):89-91. PubMed ID: 3957947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Healing of the medial collateral ligament in rats. The effects of repair, motion, and secondary stabilizing ligaments.
    Hart DP; Dahners LE
    J Bone Joint Surg Am; 1987 Oct; 69(8):1194-9. PubMed ID: 3667648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of local vibration on bone loss in -tail-suspended rats.
    Sun LW; Luan HQ; Huang YF; Wang Y; Fan YB
    Int J Sports Med; 2014 Jun; 35(7):615-24. PubMed ID: 24920560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The strength and failure characteristics of rat medial collateral ligaments.
    Crowninshield RD; Pope MH
    J Trauma; 1976 Feb; 16(2):99-105. PubMed ID: 1255835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading.
    Poh SY; Yew KS; Wong PL; Koh SB; Chia SL; Fook-Chong S; Howe TS
    Knee; 2012 Mar; 19(2):135-9. PubMed ID: 21257313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion.
    Amiri S; Cooke D; Kim IY; Wyss U
    Proc Inst Mech Eng H; 2007 Nov; 221(8):821-32. PubMed ID: 18161242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Skeletal response to simulated weightlessness: a comparison of suspension techniques.
    Wronski TJ; Morey-Holton ER
    Aviat Space Environ Med; 1987 Jan; 58(1):63-8. PubMed ID: 3814035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Hip centralising forces of the iliotibial tract with various femoral neck angles].
    Birnbaum K; Pandorf T; Prescher A; Niethard FU; Weisskopf M
    Z Orthop Unfall; 2009; 147(3):341-9. PubMed ID: 19551586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of in vitro testing over extended periods on the low-load mechanical behaviour of dense connective tissues.
    King GJ; Pillon CL; Johnson JA
    J Orthop Res; 2000 Jul; 18(4):678-81. PubMed ID: 11052506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis.
    Chan SC; Seedhom BB
    Proc Inst Mech Eng H; 1995; 209(1):17-30. PubMed ID: 7669117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smart instrumentation for determination of ligament stiffness and ligament balance in total knee arthroplasty.
    Hasenkamp W; Villard J; Delaloye JR; Arami A; Bertsch A; Jolles BM; Aminian K; Renaud P
    Med Eng Phys; 2014 Jun; 36(6):721-5. PubMed ID: 24405737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty.
    Kuriyama S; Ishikawa M; Furu M; Ito H; Matsuda S
    J Orthop Res; 2014 Dec; 32(12):1658-66. PubMed ID: 25171755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone.
    Huang TH; Lin SC; Chang FL; Hsieh SS; Liu SH; Yang RS
    J Appl Physiol (1985); 2003 Jul; 95(1):300-7. PubMed ID: 12611764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model.
    Garber MA; McDowell DL; Hutton WC
    Aviat Space Environ Med; 2000 Jun; 71(6):586-92. PubMed ID: 10870817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative analysis of the structural properties of the collateral ligaments of the human knee.
    Wilson WT; Deakin AH; Payne AP; Picard F; Wearing SC
    J Orthop Sports Phys Ther; 2012 Apr; 42(4):345-51. PubMed ID: 22030378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.