These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23167314)

  • 1. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumetrics of CO2 storage in deep saline formations.
    Steele-MacInnis M; Capobianco RM; Dilmore R; Goodman A; Guthrie G; Rimstidt JD; Bodnar RJ
    Environ Sci Technol; 2013 Jan; 47(1):79-86. PubMed ID: 22916959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure.
    Smith MM; Sholokhova Y; Hao Y; Carroll SA
    Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.
    Mitchell AC; Dideriksen K; Spangler LH; Cunningham AB; Gerlach R
    Environ Sci Technol; 2010 Jul; 44(13):5270-6. PubMed ID: 20540571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evaluation of wellbore integrity along the cement-rock boundary.
    Newell DL; Carey JW
    Environ Sci Technol; 2013 Jan; 47(1):276-82. PubMed ID: 22663177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ganglion dynamics and its implications to geologic carbon dioxide storage.
    Wang Y; Bryan C; Dewers T; Heath JE; Jove-Colon C
    Environ Sci Technol; 2013 Jan; 47(1):219-26. PubMed ID: 22844874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration.
    Iglauer S; Mathew MS; Bresme F
    J Colloid Interface Sci; 2012 Nov; 386(1):405-14. PubMed ID: 22921540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.
    Surface JA; Skemer P; Hayes SE; Conradi MS
    Environ Sci Technol; 2013 Jan; 47(1):119-25. PubMed ID: 22676479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of CO₂ solubility-trapping and mineral-trapping in microbial-mediated CO₂-brine-sandstone interaction.
    Zhao J; Lu W; Zhang F; Lu C; Du J; Zhu R; Sun L
    Mar Pollut Bull; 2014 Aug; 85(1):78-85. PubMed ID: 25015018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary Trapping of CO2 in Oil Reservoirs: Observations in a Mixed-Wet Carbonate Rock.
    Al-Menhali AS; Krevor S
    Environ Sci Technol; 2016 Mar; 50(5):2727-34. PubMed ID: 26812184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network.
    Wang Y; Zhang C; Wei N; Oostrom M; Wietsma TW; Li X; Bonneville A
    Environ Sci Technol; 2013 Jan; 47(1):212-8. PubMed ID: 22676368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ spectrophotometric determination of pH under geologic CO2 sequestration conditions: method development and application.
    Shao H; Thompson CJ; Qafoku O; Cantrell KJ
    Environ Sci Technol; 2013 Jan; 47(1):63-70. PubMed ID: 22708540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Vinegar & Wellington calibration for estimation of fluid saturation and porosity from CT images for a core flooding test under geologic carbon storage conditions.
    Miao X; Wang Y; Zhang L; Wei N; Li X
    Micron; 2019 Sep; 124():102703. PubMed ID: 31284162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2-rich brine.
    Abdoulghafour H; Luquot L; Gouze P
    Environ Sci Technol; 2013 Sep; 47(18):10332-8. PubMed ID: 23937192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.