BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 23167517)

  • 1. Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport.
    Paris CB; HĂ©naff ML; Aman ZM; Subramaniam A; Helgers J; Wang DP; Kourafalou VH; Srinivasan A
    Environ Sci Technol; 2012 Dec; 46(24):13293-302. PubMed ID: 23167517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms.
    Kleindienst S; Seidel M; Ziervogel K; Grim S; Loftis K; Harrison S; Malkin SY; Perkins MJ; Field J; Sogin ML; Dittmar T; Passow U; Medeiros PM; Joye SB
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14900-5. PubMed ID: 26553985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating dispersion of oils from a subsea release comparing mechanical and chemically enhanced dispersion - An experimental study of the influence of oil properties.
    Brandvik PJ; Leirvik F; Hofstad KH; McKeever TJ
    Mar Pollut Bull; 2023 Oct; 195():115479. PubMed ID: 37683392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing oil droplet sizes from a subsea oil and gas release by water jetting a laboratory study performed at different scales.
    Brandvik PJ; Davies E; Krause DF; Leirvik F; Daling PS
    Mar Pollut Bull; 2023 Aug; 193():115009. PubMed ID: 37327721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Managing deepsea oil spills through a systematic modeling approach.
    Chen Z; Yang Z; Lee K; Lu Y
    J Environ Manage; 2024 Jun; 360():121118. PubMed ID: 38759562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of spilled oil dispersion affected by dispersant: Characteristic, stability, and related mechanism.
    Fu H; Liu W; Sun X; Zhang F; Wei J; Li Y; Li Y; Lu J; Bao M
    J Environ Manage; 2024 May; 358():120888. PubMed ID: 38615399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approaches on the use of tunicates (Ciona robusta) for toxicity assessments.
    Eliso MC; Manfra L; Savorelli F; Tornambè A; Spagnuolo A
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):32132-32138. PubMed ID: 32577962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersant-enhanced photodissolution of macondo crude oil: A molecular perspective.
    Podgorski DC; Walley J; Shields MP; Hebert D; Harsha ML; Spencer RGM; Tarr MA; Zito P
    J Hazard Mater; 2024 Jan; 461():132558. PubMed ID: 37729707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic Treadmill Reveals Reduced Rising Speeds of Oil Droplets Deformed by Marine Bacteria.
    Hickl V; Pamu HH; Juarez G
    Environ Sci Technol; 2023 Sep; 57(37):14082-14089. PubMed ID: 37675846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid Monte Carlo simulation risk model for oil exploration projects.
    Balas EA
    Mar Pollut Bull; 2023 Sep; 194(Pt A):115270. PubMed ID: 37566977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of dispersion characteristics of underwater gas-oil two-phase leakage process.
    Sun Y; Zhu X; Cao X; Sun S; Bian J
    Mar Pollut Bull; 2023 Dec; 197():115766. PubMed ID: 37976592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Providing a comprehensive approach to oil well blowout risk assessment.
    Satiarvand M; Orak N; Varshosaz K; Hassan EM; Cheraghi M
    PLoS One; 2023; 18(12):e0296086. PubMed ID: 38117808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards integrated modeling of the long-term impacts of oil spills.
    Solo-Gabriele HM; Fiddaman T; Mauritzen C; Ainsworth C; Abramson DM; Berenshtein I; Chassignet EP; Chen SS; Conmy RN; Court CD; Dewar WK; Farrington JW; Feldman MG; Ferguson AC; Fetherston-Resch E; French-McCay D; Hale C; He R; Kourafalou VH; Lee K; Liu Y; Masi M; Maung-Douglass ES; Morey SL; Murawski SA; Paris CB; Perlin N; Pulster EL; Quigg A; Reed DJ; Ruzicka JJ; Sandifer PA; Shepherd JG; Singer BH; Stukel MR; Sutton TT; Weisberg RH; Wiesenburg D; Wilson CA; Wilson M; Wowk KM; Yanoff C; Yoskowitz D
    Mar Policy; 2021 Sep; 131():1-18. PubMed ID: 37850151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tradeoff between physical encounters and consumption determines an optimal droplet size for microbial degradation of dispersed oil.
    Fernandez VI; Stocker R; Juarez G
    Sci Rep; 2022 Mar; 12(1):4734. PubMed ID: 35304520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invisible oil beyond the
    Berenshtein I; Paris CB; Perlin N; Alloy MM; Joye SB; Murawski S
    Sci Adv; 2020 Feb; 6(7):eaaw8863. PubMed ID: 32095516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. News Feature: The perplexing physics of oil dispersants.
    Waldrop MM
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10603-10607. PubMed ID: 31138709
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrodynamic Interaction Enhances Colonization of Sinking Nutrient Sources by Motile Microorganisms.
    Desai N; Shaik VA; Ardekani AM
    Front Microbiol; 2019; 10():289. PubMed ID: 30915037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts.
    Korotenko KA
    PeerJ; 2018; 6():e5448. PubMed ID: 30186680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model.
    Ainsworth CH; Paris CB; Perlin N; Dornberger LN; Patterson WF; Chancellor E; Murawski S; Hollander D; Daly K; Romero IC; Coleman F; Perryman H
    PLoS One; 2018; 13(1):e0190840. PubMed ID: 29370187
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.