These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 23167563)
1. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. Gao H; Xiao F; Ching CB; Duan H ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563 [TBL] [Abstract][Full Text] [Related]
2. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863 [TBL] [Abstract][Full Text] [Related]
3. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. Jin Y; Chen H; Chen M; Liu N; Li Q ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813 [TBL] [Abstract][Full Text] [Related]
4. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427 [TBL] [Abstract][Full Text] [Related]
5. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Kang YJ; Chung H; Han CH; Kim W Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712 [TBL] [Abstract][Full Text] [Related]
6. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. Gao H; Xiao F; Ching CB; Duan H ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683 [TBL] [Abstract][Full Text] [Related]
7. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. Zheng Q; Cai Z; Ma Z; Gong S ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769 [TBL] [Abstract][Full Text] [Related]
8. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Jiang H; Li C; Sun T; Ma J Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343 [TBL] [Abstract][Full Text] [Related]
9. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. Kang YJ; Chun SJ; Lee SS; Kim BY; Kim JH; Chung H; Lee SY; Kim W ACS Nano; 2012 Jul; 6(7):6400-6. PubMed ID: 22717174 [TBL] [Abstract][Full Text] [Related]
10. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics. Chen W; He Y; Li X; Zhou J; Zhang Z; Zhao C; Gong C; Li S; Pan X; Xie E Nanoscale; 2013 Dec; 5(23):11733-41. PubMed ID: 24114203 [TBL] [Abstract][Full Text] [Related]
11. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Zhi M; Xiang C; Li J; Li M; Wu N Nanoscale; 2013 Jan; 5(1):72-88. PubMed ID: 23151936 [TBL] [Abstract][Full Text] [Related]
13. All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. Liao Q; Li N; Jin S; Yang G; Wang C ACS Nano; 2015 May; 9(5):5310-7. PubMed ID: 25938705 [TBL] [Abstract][Full Text] [Related]
14. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. Shen J; Yang C; Li X; Wang G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572 [TBL] [Abstract][Full Text] [Related]
16. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Aval LF; Ghoranneviss M; Pour GB Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358 [TBL] [Abstract][Full Text] [Related]
17. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Sun G; Zhang X; Lin R; Yang J; Zhang H; Chen P Angew Chem Int Ed Engl; 2015 Apr; 54(15):4651-6. PubMed ID: 25694387 [TBL] [Abstract][Full Text] [Related]
18. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Notarianni M; Liu J; Mirri F; Pasquali M; Motta N Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789 [TBL] [Abstract][Full Text] [Related]
19. A free-standing, flexible PEDOT:PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors. Ahmed S; Rafat M; Singh MK; Hashmi SA Nanotechnology; 2018 Sep; 29(39):395401. PubMed ID: 29968570 [TBL] [Abstract][Full Text] [Related]
20. Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance. Wang H; Wang Y; Hu Z; Wang X ACS Appl Mater Interfaces; 2012 Dec; 4(12):6827-34. PubMed ID: 23148646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]