These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 23167563)
21. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics. Su F; Miao M Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526 [TBL] [Abstract][Full Text] [Related]
22. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
23. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371 [TBL] [Abstract][Full Text] [Related]
24. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316 [TBL] [Abstract][Full Text] [Related]
25. Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Subramani K; Jeyakumar D; Sathish M Phys Chem Chem Phys; 2014 Mar; 16(10):4952-61. PubMed ID: 24477791 [TBL] [Abstract][Full Text] [Related]
26. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681 [TBL] [Abstract][Full Text] [Related]
27. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. Yuksel R; Sarioba Z; Cirpan A; Hiralal P; Unalan HE ACS Appl Mater Interfaces; 2014 Sep; 6(17):15434-9. PubMed ID: 25127070 [TBL] [Abstract][Full Text] [Related]
28. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO Sheng L; Jiang L; Wei T; Fan Z Small; 2016 Oct; 12(37):5217-5227. PubMed ID: 27483052 [TBL] [Abstract][Full Text] [Related]
29. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679 [TBL] [Abstract][Full Text] [Related]
30. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Lin TW; Dai CS; Hung KC Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978 [TBL] [Abstract][Full Text] [Related]
31. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729 [TBL] [Abstract][Full Text] [Related]
32. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors. He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338 [TBL] [Abstract][Full Text] [Related]
33. Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes. Fan H; Niu R; Duan J; Liu W; Shen W ACS Appl Mater Interfaces; 2016 Aug; 8(30):19475-83. PubMed ID: 27406686 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors. Yang M; Lee KG; Lee SJ; Lee SB; Han YK; Choi BG ACS Appl Mater Interfaces; 2015 Oct; 7(40):22364-71. PubMed ID: 26387450 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical Performance of PbO2 and PbO2-CNT Composite Electrodes for Energy Storage Devices. Soumya MS; Binitha G; Praveen P; Subramanian KR; Lee YS; Nair VS; Sivakumar N J Nanosci Nanotechnol; 2015 Jan; 15(1):703-8. PubMed ID: 26328430 [TBL] [Abstract][Full Text] [Related]
37. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832 [TBL] [Abstract][Full Text] [Related]
38. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. Karthika P; Rajalakshmi N; Dhathathreyan KS Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269 [TBL] [Abstract][Full Text] [Related]
39. Assembly of flexible CoMoO Wang J; Zhang L; Liu X; Zhang X; Tian Y; Liu X; Zhao J; Li Y Sci Rep; 2017 Jan; 7():41088. PubMed ID: 28106170 [TBL] [Abstract][Full Text] [Related]
40. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors. Yang B; Hao C; Wen F; Wang B; Mu C; Xiang J; Li L; Xu B; Zhao Z; Liu Z; Tian Y ACS Appl Mater Interfaces; 2017 Dec; 9(51):44478-44484. PubMed ID: 29192760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]