These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23167841)

  • 1. Improved electronic properties from third-order SCC-DFTB with cost efficient post-SCF extensions.
    Kaminski S; Gaus M; Elstner M
    J Phys Chem A; 2012 Dec; 116(48):11927-37. PubMed ID: 23167841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended polarization in third-order SCC-DFTB from chemical-potential equalization.
    Kaminski S; Giese TJ; Gaus M; York DM; Elstner M
    J Phys Chem A; 2012 Sep; 116(36):9131-41. PubMed ID: 22894819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70).
    Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K
    J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method.
    Witek HA; Morokuma K
    J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient calculation of charge-transfer matrix elements for hole transfer in DNA.
    Kubar T; Woiczikowski PB; Cuniberti G; Elstner M
    J Phys Chem B; 2008 Jul; 112(26):7937-47. PubMed ID: 18543986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method.
    Witek HA; Irle S; Morokuma K
    J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces.
    Nénon S; Champagne B
    J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.
    Smalø HS; Astrand PO; Jensen L
    J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory.
    Rappoport D; Furche F
    J Chem Phys; 2007 May; 126(20):201104. PubMed ID: 17552747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-interaction and strong correlation in DFTB.
    Hourahine B; Sanna S; Aradi B; Köhler C; Niehaus T; Frauenheim T
    J Phys Chem A; 2007 Jul; 111(26):5671-7. PubMed ID: 17552499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Density Functionals, SCC-DFTB, Neglect of Diatomic Differential Overlap (NDDO) Models and Molecular Mechanics Methods for Prolyl-Leucyl-Glycinamide (PLG) and Structural Derivatives.
    Wood RL; Young-Dixon BJ; Roy A; Gay BC; Johnson RL; Amin EA
    Theochem; 2010 Mar; 944(1-3):76-82. PubMed ID: 20401321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of non-covalent interactions in SCC-DFTB methods.
    Miriyala VM; Řezáč J
    J Comput Chem; 2017 Apr; 38(10):688-697. PubMed ID: 28093777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.